Package 'clubSandwich'

June 20, 2024
Title Cluster-Robust (Sandwich) Variance Estimators with Small-Sample Corrections

Version 0.5.11

Description Provides several cluster-robust variance estimators (i.e., sandwich estimators) for ordinary and weighted least squares linear regression models, including the bias-reduced linearization estimator introduced by Bell and McCaffrey (2002)
<https:
//www150.statcan.gc.ca/n1/pub/12-001-x/2002002/article/9058-eng.pdf> and developed further by Pustejovsky and Tipton (2017) DOI:10.1080/07350015.2016.1247004. The package includes functions for estimating the variance- covariance matrix and for testing single- and multiplecontrast hypotheses based on Wald test statistics. Tests of single regression coefficients use Satterthwaite or saddle-point corrections. Tests of multiplecontrast hypotheses use an approximation to Hotelling's T-squared distribution. Methods are provided for a variety of fitted models, including $\operatorname{lm}()$ and mlm objects, glm(), geeglm() (from package 'geepack'), ivreg() (from package 'AER'), ivreg() (from package 'ivreg' when estimated by ordinary least squares), $\operatorname{plm}()$ (from package 'plm'), gls() and lme() (from 'nlme'), lmer() (from `lme4`), robu() (from 'robumeta'), and rma.uni() and rma.mv() (from 'metafor').

URL http://jepusto.github.io/clubSandwich/
BugReports https://github.com/jepusto/clubSandwich/issues
Depends R (>= 3.0.0)
License GPL-3
VignetteBuilder knitr
LazyData true
Imports stats, sandwich, lifecycle
Suggests Formula, knitr, carData, geepack, metafor, metadat, robumeta, nlme, mlmRev, AER, plm (>= 1.6-4), Matrix, lme4, zoo, testthat, rmarkdown, covr, ivreg
RoxygenNote 7.3.1
Encoding UTF-8
Language en-US
NeedsCompilation no
Author James Pustejovsky [aut, cre] (https://orcid.org/0000-0003-0591-9465)
Maintainer James Pustejovsky jepusto@gmail.com
Repository CRAN
Date/Publication 2024-06-20 18:30:02 UTC
Contents
AchievementAwardsRCT 3
coef_test 4
conf_int 5
constraint_matrices 6
dropoutPrevention 8
findCluster.rma.mv 10
impute_covariance_matrix 10
linear_contrast 13
MortalityRates 15
pattern_covariance_matrix 16
SATcoaching 18
vcovCR 19
vcovCR.geeglm 22
vcovCR.glm 23
vcovCR.gls 25
vcovCR.ivreg 26
vcovCR.lm 28
vcovCR.lme 29
vcovCR.lmerMod 31
vcovCR.mlm 32
vcovCR.plm 34
vcovCR.rma.mv 36
vcovCR.rma.uni 37
vcovCR.robu 39
Wald_test 40
Index 43

Description

Data from a randomized trial of the Achievement Awards Demonstration program, reported in Angrist \& Lavy (2009).

Usage

AchievementAwardsRCT

Format

A data frame with 16526 rows and 21 variables:
school_id Fictitious school identification number
school_type Factor identifying the school type (Arab religious, Jewish religious, Jewish secular)
pair Number of treatment pair. Note that 7 is a triple.
treated Indicator for whether school was in treatment group
year Cohort year
student_id Fictitious student identification number
sex Factor identifying student sex
siblings Number of siblings
immigrant Indicator for immigrant status
father_ed Father's level of education
mother_ed Mother's level of education
Bagrut_status Indicator for Bagrut attainment
attempted Number of Bagrut units attempted
awarded Number of Bagrut units awarded
achv_math Indicator for satisfaction of math requirement
achv_english Indicator for satisfaction of English requirement
achv_hebrew Indicator for satisfaction of Hebrew requirement
lagscore Lagged Bagrut score
qrtl Quartile within distribution of lagscore, calculated by cohort and sex
half Lower or upper half within distribution of lagscore, calculated by cohort and sex

Source

Angrist Data Archive

References

Angrist, J. D., \& Lavy, V. (2009). The effects of high stakes high school achievement awards : Evidence from a randomized trial. American Economic Review, 99(4), 1384-1414. doi:10.1257/ aer.99.4.1384

```
coef_test Test all or selected regression coefficients in a fitted model
```


Description

coef_test reports t-tests for each coefficient estimate in a fitted linear regression model, using a sandwich estimator for the standard errors and a small sample correction for the p -value. The small-sample correction is based on a Satterthwaite approximation or a saddlepoint approximation.

```
Usage
    coef_test(
        obj,
        vcov,
        test = "Satterthwaite",
        coefs = "All",
        p_values = TRUE,
    )
```


Arguments

obj Fitted model for which to calculate t-tests.
vcov Variance covariance matrix estimated using vcovCR or a character string specifying which small-sample adjustment should be used to calculate the variancecovariance.
test Character vector specifying which small-sample corrections to calculate. "z" returns a z test (i.e., using a standard normal reference distribution). "naive-t" returns a t test with $m-1$ degrees of freedom, where m is the number of unique clusters. "naive-tp" returns a t test with $m-p$ degrees of freedom, where p is the number of regression coefficients in obj. "Satterthwaite" returns a Satterthwaite correction. "saddlepoint" returns a saddlepoint correction. Default is "Satterthwaite".
coefs Character, integer, or logical vector specifying which coefficients should be tested. The default value "All" will test all estimated coefficients.
p_values Logical indicating whether to report p-values. The default value is TRUE.
. . Further arguments passed to $v \operatorname{cov} C R$, which are only needed if vcov is a character string.

Value

A data frame containing estimated regression coefficients, standard errors, and test results. For the Satterthwaite approximation, degrees of freedom and a p-value are reported. For the saddlepoint approximation, the saddlepoint and a p-value are reported.

See Also

vcovCR

Examples

```
data("ChickWeight", package = "datasets")
lm_fit <- lm(weight ~ Diet * Time, data = ChickWeight)
diet_index <- grepl("Diet.:Time", names(coef(lm_fit)))
coef_test(lm_fit, vcov = "CR2", cluster = ChickWeight$Chick, coefs = diet_index)
V_CR2 <- vcovCR(lm_fit, cluster = ChickWeight$Chick, type = "CR2")
coef_test(lm_fit, vcov = V_CR2, coefs = diet_index)
```

conf_int \quad| Calculate confidence intervals for all or selected regression coeffi- |
| :--- |
| cients in a fitted model |

Description

conf_int reports confidence intervals for each coefficient estimate in a fitted linear regression model, using a sandwich estimator for the standard errors and a small sample correction for the critical values. The small-sample correction is based on a Satterthwaite approximation.

Usage

conf_int (
obj,
vcov,
level $=0.95$,
test = "Satterthwaite",
coefs = "All",
...,
p_values = FALSE
)

Arguments

obj
Fitted model for which to calculate confidence intervals.
vcov Variance covariance matrix estimated using vcovCR or a character string specifying which small-sample adjustment should be used to calculate the variancecovariance.

level	Desired coverage level for confidence intervals.
test	Character vector specifying which small-sample corrections to calculate. "z" returns a z test (i.e., using a standard normal reference distribution). "naive-t" returns a t test with $m-1$ degrees of freedom, where m is the number of unique clusters. "naive-tp" returns a t test with $m-p$ degrees of freedom, where p is the number of regression coefficients in obj. "Satterthwaite" returns a Satterthwaite correction. Unlike in coef_test(), "saddlepoint" is not currently supported in conf_int() because saddlepoint confidence intervals do not have a closed-form solution.
coefs	Character, integer, or logical vector specifying which coefficients should be tested. The default value "All" will test all estimated coefficients.
	Further arguments passed to vcovCR, which are only needed if vcov is a character string.
p_values	Logical indicating whether to report p-values. The default value is FALSE.

Value

A data frame containing estimated regression coefficients, standard errors, confidence intervals, and (optionally) p-values.

See Also

```
vcovCR
```


Examples

```
data("ChickWeight", package = "datasets")
lm_fit <- lm(weight ~ Diet * Time, data = ChickWeight)
diet_index <- grepl("Diet.:Time", names(coef(lm_fit)))
conf_int(lm_fit, vcov = "CR2", cluster = ChickWeight$Chick, coefs = diet_index)
V_CR2 <- vcovCR(lm_fit, cluster = ChickWeight$Chick, type = "CR2")
conf_int(lm_fit, vcov = V_CR2, level = .99, coefs = diet_index)
```

```
constraint_matrices Create constraint matrices
```


Description

Helper functions to create common types of constraint matrices, for use with Wald_test to conduct Wald-type tests of linear contrasts from a fitted regression model.

Usage

```
constrain_zero(constraints, coefs, reg_ex = FALSE)
constrain_equal(constraints, coefs, reg_ex = FALSE)
constrain_pairwise(constraints, coefs, reg_ex = FALSE, with_zero = FALSE)
```


Arguments

constraints Set of constraints to test. Can be logical (using TRUE to specify which coefficients to constrain), integer (specify the index of coefficients to constrain), character (specify the names of the coefficients to constrain), or a regular expression.
coefs Vector of coefficient estimates, used to determine the column dimension of the constraint matrix. Can be omitted if the function is called inside Wald_test().
reg_ex Logical indicating whether constraints should be interpreted as a regular expression. Defaults to FALSE.
with_zero Logical indicating whether coefficients should also be compared to zero. Defaults to FALSE.

Details

Constraints can be specified as character vectors, regular expressions (with reg_ex = TRUE), integer vectors, or logical vectors.
constrain_zero() Creates a matrix that constrains a specified set of coefficients to all be equal to zero.
constrain_equal() Creates a matrix that constrains a specified set of coefficients to all be equal. constrain_pairwise() Creates a list of constraint matrices consisting of all pairwise comparisons between a specified set of coefficients. If with_zero = TRUE, then the list will also include a set of constraint matrices comparing each coefficient to zero.

Value

A matrix or list of matrices encoding the specified set of constraints.

See Also

Wald_test

Examples

```
if (requireNamespace("carData", quietly = TRUE)) withAutoprint({
data(Duncan, package = "carData")
Duncan$cluster <- sample(LETTERS[1:8], size = nrow(Duncan), replace = TRUE)
Duncan_fit <- lm(prestige ~ 0 + type + income + type:income + type:education, data=Duncan)
# Note that type:income terms are interactions because main effect of income is included
# but type:education terms are separate slopes for each unique level of type
```

```
Duncan_coefs <- coef(Duncan_fit)
# The following are all equivalent
constrain_zero(constraints = c("typeprof:income","typewc:income"),
    coefs = Duncan_coefs)
constrain_zero(constraints = ":income", coefs = Duncan_coefs,
    reg_ex = TRUE)
constrain_zero(constraints = 5:6, coefs = Duncan_coefs)
constrain_zero(constraints = c(FALSE, FALSE, FALSE, FALSE, TRUE, TRUE, FALSE, FALSE, FALSE),
    coefs = Duncan_coefs)
# The following are all equivalent
constrain_equal(c("typebc:education","typeprof:education","typewc:education"),
    Duncan_coefs)
constrain_equal(":education", Duncan_coefs, reg_ex = TRUE)
constrain_equal(7:9, Duncan_coefs)
constrain_equal(c(FALSE,FALSE,FALSE,FALSE,FALSE,FALSE,TRUE,TRUE,TRUE),
    Duncan_coefs)
# Test pairwise equality of the education slopes
constrain_pairwise(":education", Duncan_coefs,
    reg_ex = TRUE)
# Test pairwise equality of the income slopes, plus compare against zero
constrain_pairwise(":income", Duncan_coefs,
    reg_ex = TRUE, with_zero = TRUE)
})
```


dropoutPrevention Dropout prevention/intervention program effects

Description

A dataset containing estimated effect sizes, variances, and covariates from a meta-analysis of dropout prevention/intervention program effects, conducted by Wilson et al. (2011). Missing observations were imputed.

Usage

dropoutPrevention

Format

A data frame with 385 rows and 18 variables:
LOR1 log-odds ratio measuring the intervention effect
varLOR estimated sampling variance of the log-odds ratio
studyID unique identifier for each study
studySample unique identifier for each sample within a study
study_design study design (randomized, matched, or non-randomized and unmatched)
outcome outcome measure for the intervention effect is estimated (school dropout, school enrollment, graduation, graduation or GED receipt)
evaluator_independence degree of evaluator independence (independent, indirect but influential, involved in planning but not delivery, involved in delivery)
implementation_quality level of implementation quality (clear problems, possible problems, no apparent problems)
program_site Program delivery site (community, mixed, school classroom, school but outside of classroom)
attrition Overall attrition (proportion)
group_equivalence pretest group-equivalence log-odds ratio
adjusted adjusted or unadjusted data used to calculate intervention effect
male_pct proportion of the sample that is male
white_pct proportion of the sample that is white
average_age average age of the sample
duration program duration (in weeks)
service_hrs program contact hours per week
big_study indicator for the 32 studies with 3 or more effect sizes

Source

Wilson, S. J., Lipsey, M. W., Tanner-Smith, E., Huang, C. H., \& Steinka-Fry, K. T. (2011). Dropout prevention and intervention programs: Effects on school completion and dropout Among schoolaged children and youth: A systematic review. _Campbell Systematic Reviews, 7_(1), 1-61. doi:10.4073/ csr. 2011.8

References

Wilson, S. J., Lipsey, M. W., Tanner-Smith, E., Huang, C. H., \& Steinka-Fry, K. T. (2011). Dropout prevention and intervention programs: Effects on school completion and dropout Among schoolaged children and youth: A systematic review. _Campbell Systematic Reviews, 7_(1), 1-61. doi:10.4073/ csr. 2011.8

Tipton, E., \& Pustejovsky, J. E. (2015). Small-sample adjustments for tests of moderators and model fit using robust variance estimation in meta-regression. _Journal of Educational and Behavioral Statistics, 40_(6), 604-634. doi:10.3102/1076998615606099
findCluster.rma.mv Detect cluster structure of an rma.mv object

Description

findCluster.rma.mv returns a vector of ID variables for the highest level of clustering in a fitted rma.mv model.

Usage

findCluster.rma.mv(obj)

Arguments

obj
A fitted rma.mv object.

Value

A a vector of ID variables for the highest level of clustering in obj.

Examples

```
    if (requireNamespace("metafor", quietly = TRUE)) {
    library(metafor)
    data(dat.assink2016, package = "metadat")
    mfor_fit <- rma.mv(yi ~ year + deltype,
        V = vi, random = ~ 1 | study / esid,
        data = dat.assink2016)
    findCluster.rma.mv(mfor_fit)
    }
```

 impute_covariance_matrix

Description

‘r lifecycle::badge("superseded")‘
This function is superseded by the vcalc provided by the metafor package. Compared to impute_covariance_matrix, vcalc provides many further features, includes a data argument, and uses syntax that is consistent with other functions in metafor.
impute_covariance_matrix calculates a block-diagonal covariance matrix, given the marginal variances, the block structure, and an assumed correlation structure. Can be used to create compoundsymmetric structures, AR(1) auto-correlated structures, or combinations thereof.

```
Usage
    impute_covariance_matrix(
        vi,
        cluster,
        r,
        ti,
        ar1,
    smooth_vi = FALSE,
    subgroup = NULL,
    return_list = identical(as.factor(cluster), sort(as.factor(cluster))),
    check_PD = TRUE
)
```


Arguments

vi	Vector of variances Vector indicating which effects belong to the same cluster. Effects with the same value of 'cluster' will be treated as correlated.
r	Vector or numeric value of assumed constant correlation(s) between effect size estimates from each study. Vector of time-points describing temporal spacing of effects, for use with auto- regressive correlation structures.
ti	
Vector or numeric value of assumed AR(1) auto-correlation(s) between effect	
size estimates from each study. If specified, then ti argument must be specified.	

Details

A block-diagonal variance-covariance matrix (possibly represented as a list of matrices) with a specified structure. The structure depends on whether the r argument, ar1 argument, or both arguments are specified. Let $v_{i j}$ denote the specified variance for effect i in cluster j and $C_{h i j}$ be the covariance between effects h and i in cluster j.

- If only r is specified, each block of the variance-covariance matrix will have a constant (compound symmetric) correlation, so that

$$
C_{h i j}=r_{j} \sqrt{v_{h j} v_{i j}},
$$

where r_{j} is the specified correlation for cluster j. If only a single value is given in r, then it will be used for every cluster.

- If only ar1 is specified, each block of the variance-covariance matrix will have an $\operatorname{AR}(1)$ auto-correlation structure, so that

$$
C_{h i j}=\phi_{j}^{\left|t_{h j}-t_{i j}\right|} \sqrt{v_{h j} v_{i j}},
$$

where ϕ_{j} is the specified auto-correlation for cluster j and $t_{h j}$ and $t_{i j}$ are specified time-points corresponding to effects h and i in cluster j. If only a single value is given in ar1, then it will be used for every cluster.

- If both r and ar1 are specified, each block of the variance-covariance matrix will have combination of compound symmetric and an $\operatorname{AR}(1)$ auto-correlation structures, so that

$$
C_{h i j}=\left[r_{j}+\left(1-r_{j}\right) \phi_{j}^{\left|t_{h_{j}}-t_{i j}\right|}\right] \sqrt{v_{h j} v_{i j}},
$$

where r_{j} is the specified constant correlation for cluster j, ϕ_{j} is the specified auto-correlation for cluster j and $t_{h j}$ and $t_{i j}$ are specified time-points corresponding to effects h and i in cluster j. If only single values are given in r or ar1, they will be used for every cluster.

If smooth_vi = TRUE, then all of the variances within cluster j will be set equal to the average variance of cluster j, i.e.,

$$
v_{i j}^{\prime}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} v_{i j}
$$

for $i=1, \ldots, n_{j}$ and $j=1, \ldots, k$.

Value

If cluster is appropriately sorted, then a list of matrices, with one entry per cluster, will be returned by default. If cluster is out of order, then the full variance-covariance matrix will be returned by default. The output structure can be controlled with the optional return_list argument.

Examples

if (requireNamespace("metafor", quietly = TRUE)) \{
library(metafor)
\# Constant correlation

```
data(SATcoaching)
V_list <- impute_covariance_matrix(vi = SATcoaching$V, cluster = SATcoaching$study, r = 0.66)
MVFE <- rma.mv(d ~ 0 + test, V = V_list, data = SATcoaching)
conf_int(MVFE, vcov = "CR2", cluster = SATcoaching$study)
}
```

linear_contrast Calculate confidence intervals and p-values for linear contrasts of regression coefficients in a fitted model

Description

linear_contrast reports confidence intervals and (optionally) p-values for linear contrasts of regression coefficients from a fitted model, using a sandwich estimator for the standard errors and (optionally) a small sample correction for the critical values. The default small-sample correction is based on a Satterthwaite approximation.

Usage

linear_contrast(obj,
vcov,
contrasts,
level = 0.95,
test = "Satterthwaite",
...,
p_values = FALSE
)

Arguments

obj
vcov Variance covariance matrix estimated using vcovCR or a character string specifying which small-sample adjustment should be used to calculate the variancecovariance.
contrasts A contrast matrix, or a list of multiple contrast matrices to test. See details and examples.
level Desired coverage level for confidence intervals.
test Character vector specifying which small-sample corrections to calculate. "z" returns a z test (i.e., using a standard normal reference distribution). "naive-t" returns a t test with $m-1$ degrees of freedom, where m is the number of unique clusters. "naive-tp" returns a t test with $m-p$ degrees of freedom, where p is the number of regression coefficients in obj. "Satterthwaite" returns a Satterthwaite correction. Unlike in coef_test(), "saddlepoint" is not currently supported in conf_int() because saddlepoint confidence intervals do not have a closed-form solution.
... Further arguments passed to vcovCR, which are only needed if vcov is a character string.
p_values Logical indicating whether to report p-values. The default value is FALSE.

Details

Constraints can be specified directly as $q \mathrm{X}$ p matrices or indirectly through constrain_pairwise, constrain_equal, or constrain_zero.

Value

A data frame containing estimated contrasts, standard errors, confidence intervals, and (optionally) p-values.

See Also

```
vcovCR
```


Examples

```
data("ChickWeight", package = "datasets")
lm_fit <- lm(weight ~ 0 + Diet + Time:Diet, data = ChickWeight)
# Pairwise comparisons of diet-by-time slopes
linear_contrast(lm_fit, vcov = "CR2", cluster = ChickWeight$Chick,
    contrasts = constrain_pairwise("Diet.:Time", reg_ex = TRUE))
if (requireNamespace("carData", quietly = TRUE)) withAutoprint({
    data(Duncan, package = "carData")
    Duncan$cluster <- sample(LETTERS[1:8], size = nrow(Duncan), replace = TRUE)
    Duncan_fit <- lm(prestige ~ 0 + type + income + type:income + type:education, data=Duncan)
    # Note that type:income terms are interactions because main effect of income is included
    # but type:education terms are separate slopes for each unique level of type
    # Pairwise comparisons of type-by-education slopes
    linear_contrast(Duncan_fit, vcov = "CR2", cluster = Duncan$cluster,
                                    contrasts = constrain_pairwise(":education", reg_ex = TRUE),
                        test = "Satterthwaite")
    # Pairwise comparisons of type-by-income interactions
    linear_contrast(Duncan_fit, vcov = "CR2", cluster = Duncan$cluster,
                            contrasts = constrain_pairwise(":income", reg_ex = TRUE, with_zero = TRUE),
                        test = "Satterthwaite")
```

\})

Description

A dataset containing state-level annual mortality rates for select causes of death, as well as data related to the minimum legal drinking age and alcohol consumption.

Usage

MortalityRates

Format

A data frame with 5508 rows and 12 variables:
year Year of observation
state identifier for state
count Number of deaths
pop Population size
legal Proportion of 18-20 year-old population that is legally allowed to drink
beertaxa Beer taxation rate
beerpercap Beer consumption per capita
winepercap Wine consumption per capita
spiritpercap Spirits consumption per capita
totpercap Total alcohol consumption per capita
mrate Mortality rate per 10,000
cause Cause of death

Source

Mastering 'Metrics data archive

References

Angrist, J. D., and Pischke, J. S. (2014). _Mastering'metrics: the path from cause to effect_. Princeton University Press, 2014.

Carpenter, C., \& Dobkin, C. (2011). The minimum legal drinking age and public health. _Journal of Economic Perspectives, 25_(2), 133-156. doi:10.1257/jep.25.2.133

```
pattern_covariance_matrix
```

Impute a patterned block-diagonal covariance matrix

Description

'r lifecycle::badge("superseded")'
This function is superseded by the vcalc provided by the metafor package. Compared to pattern_covariance_matrix, vcalc provides many further features, includes a data argument, and uses syntax that is consistent with other functions in metafor.
pattern_covariance_matrix calculates a block-diagonal covariance matrix, given the marginal variances, the block structure, and an assumed correlation structure defined by a patterned correlation matrix.

Usage

pattern_covariance_matrix(
vi,
cluster,
pattern_level,
r_pattern,
r,
smooth_vi = FALSE,
subgroup $=$ NULL,
return_list = identical(as.factor(cluster), sort(as.factor(cluster))),
check_PD = TRUE
)

Arguments

vi	Vector of variances cluster
Vector indicating which effects belong to the same cluster. Effects with the same	
value of 'cluster' will be treated as correlated.	
pattern_level	Vector of categories for each effect size, used to determine which entry of the pattern matrix will be used to impute a correlation.
r_pattern	Patterned correlation matrix with row and column names corresponding to the levels of pattern.
rVector or numeric value of assumed constant correlation(s) between effect size estimates from each study.	
smooth_vi	Logical indicating whether to smooth the marginal variances by taking the aver- age vi within each cluster. Defaults to FALSE.
subgroup	Vector of category labels describing sub-groups of effects. If non-null, effects that share the same category label and the same cluster will be treated as corre- lated, but effects with different category labels will be treated as uncorrelated, even if they come from the same cluster.

return_list Optional logical indicating whether to return a list of matrices (with one entry per block) or the full variance-covariance matrix.
check_PD Optional logical indicating whether to check whether each covariance matrix is positive definite. If TRUE (the default), the function will display a warning if any covariance matrix is not positive definite.

Details

A block-diagonal variance-covariance matrix (possibly represented as a list of matrices) with a specified correlation structure, defined by a patterned correlation matrix. Let $v_{i j}$ denote the specified variance for effect i in cluster j and $C_{h i j}$ be the covariance between effects h and i in cluster j. Let $p_{i j}$ be the level of the pattern variable for effect i in cluster j, taking a value in $1, \ldots, C$. A patterned correlation matrix is defined as a set of correlations between pairs of effects taking each possible combination of patterns. Formally, let $r_{c d}$ be the correlation between effects in categories c and d, respectively, where $r_{c d}=r_{d c}$. Then the covariance between effects h and i in cluster j is taken to be

$$
C_{h i j}=\sqrt{v_{h j} v_{i j}} \times r_{p_{h j} p_{i j}} .
$$

Correlations between effect sizes within the same category are defined by the diagonal values of the pattern matrix, which may take values less than one.
Combinations of pattern levels that do not occur in the patterned correlation matrix will be set equal to r.

If smooth_vi $=$ TRUE, then all of the variances within cluster j will be set equal to the average variance of cluster j, i.e.,

$$
v_{i j}^{\prime}=\frac{1}{n_{j}} \sum_{i=1}^{n_{j}} v_{i j}
$$

for $i=1, \ldots, n_{j}$ and $j=1, \ldots, k$.

Value

If cluster is appropriately sorted, then a list of matrices, with one entry per cluster, will be returned by default. If cluster is out of order, then the full variance-covariance matrix will be returned by default. The output structure can be controlled with the optional return_list argument.

Examples

```
pkgs_available <-
    requireNamespace("metafor", quietly = TRUE) &
    requireNamespace("robumeta", quietly = TRUE)
if (pkgs_available) {
library(metafor)
data(oswald2013, package = "robumeta")
dat <- escalc(data = oswald2013, measure = "ZCOR", ri = R, ni = N)
subset_ids <- unique(dat$Study)[1:20]
dat <- subset(dat, Study %in% subset_ids)
# make a patterned correlation matrix
```

```
p_levels <- levels(dat$Crit.Cat)
r_pattern <- 0.7^as.matrix(dist(1:length(p_levels)))
diag(r_pattern) <- seq(0.75, 0.95, length.out = 6)
rownames(r_pattern) <- colnames(r_pattern) <- p_levels
# impute the covariance matrix using patterned correlations
V_list <- pattern_covariance_matrix(vi = dat$vi,
    cluster = dat$Study,
    pattern_level = dat$Crit.Cat,
    r_pattern = r_pattern,
    smooth_vi = TRUE)
# fit a model using imputed covariance matrix
MVFE <- rma.mv(yi ~ 0 + Crit.Cat, v = V_list,
        random = ~ Crit.Cat | Study,
        data = dat)
conf_int(MVFE, vcov = "CR2")
}
```

 SATcoaching Randomized experiments on SAT coaching

Description

Effect sizes from studies on the effects of SAT coaching, reported in Kalaian and Raudenbush (1996)

Usage

SATcoaching

Format

A data frame with 67 rows and 11 variables:
study Study identifier
year Year of publication
test Character string indicating whether effect size corresponds to outcome on verbal (SATV) or math (SATM) test
d Effect size estimate (Standardized mean difference)
V Variance of effect size estimate
nT Sample size in treatment condition
nC Sample size in control condition
study_type Character string indicating whether study design used a matched, non-equivalent, or randomized control group
hrs Hours of coaching
ETS Indicator variable for Educational Testing Service
homework Indicator variable for homework

References

Kalaian, H. A. \& Raudenbush, S. W. (1996). A multivariate mixed linear model for meta-analysis. Psychological Methods, 1(3), 227-235. doi:10.1037/1082989X.1.3.227
vcovCR Cluster-robust variance-covariance matrix

Description

This is a generic function, with specific methods defined for $1 \mathrm{~m}, \mathrm{plm}, \mathrm{glm}, \mathrm{gls}, 1 \mathrm{me}$, robu, rma. uni, and rma.mv objects.
vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates.

Usage

```
vcovCR(obj, cluster, type, target, inverse_var, form, ...)
    ## Default S3 method:
    vcovCR(
        obj,
        cluster,
    type,
    target = NULL,
    inverse_var = FALSE,
    form = "sandwich",
    )
```


Arguments

obj Fitted model for which to calculate the variance-covariance matrix
cluster Expression or vector indicating which observations belong to the same cluster. For some classes, the cluster will be detected automatically if not specified.
type Character string specifying which small-sample adjustment should be used, with available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "Details" section of vcovCR for further information.

target	Optional matrix or vector describing the working variance-covariance model used to calculate the CR2 and CR4 adjustment matrices. If a vector, the target matrix is assumed to be diagonal. If not specified, vcovCR will attempt to infer a value.
inverse_var	Optional logical indicating whether the weights used in fitting the model are inverse-variance. If not specified, vcovCR will attempt to infer a value.
form	Controls the form of the returned matrix. The default "sandwich" will return the sandwich variance-covariance matrix. Alternately, setting form = "meat" will return only the meat of the sandwich and setting form = B, where B is a matrix of appropriate dimension, will return the sandwich variance-covariance matrix calculated using B as the bread. form = "estfun" will return the (appropriately
scaled) estimating function, the transposed crossproduct of which is equal to the	

Details

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates.
Several different small sample corrections are available, which run parallel with the "HC" corrections for heteroskedasticity-consistent variance estimators, as implemented in vcovHC. The "CR2" adjustment is recommended (Pustejovsky \& Tipton, 2017; Imbens \& Kolesar, 2016). See Pustejovsky and Tipton (2017) and Cameron and Miller (2015) for further technical details. Available options include:
"CR0" is the original form of the sandwich estimator (Liang \& Zeger, 1986), which does not make any small-sample correction.
"CR1" multiplies CR0 by $m /(m-1)$, where m is the number of clusters.
"CR1p" multiplies CR0 by $m /(m-p)$, where m is the number of clusters and p is the number of covariates.
"CR1S" multiplies CR0 by $(m(N-1)) /[(m-1)(N-p)]$, where m is the number of clusters, N is the total number of observations, and p is the number of covariates. Some Stata commands use this correction by default.
"CR2" is the "bias-reduced linearization" adjustment proposed by Bell and McCaffrey (2002) and further developed in Pustejovsky and Tipton (2017). The adjustment is chosen so that the variance-covariance estimator is exactly unbiased under a user-specified working model.
"CR3" approximates the leave-one-cluster-out jackknife variance estimator (Bell \& McCaffrey, 2002).

Value

An object of class c("vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates. The matrix has several attributes:
type indicates which small-sample adjustment was used
cluster contains the factor vector that defines independent clusters
bread contains the bread matrix
\mathbf{v} _scale constant used in scaling the sandwich estimator
est_mats contains a list of estimating matrices used to calculate the sandwich estimator
adjustments contains a list of adjustment matrices used to calculate the sandwich estimator
target contains the working variance-covariance model used to calculate the adjustment matrices. This is needed for calculating small-sample corrections for Wald tests.

References

Bell, R. M., \& McCaffrey, D. F. (2002). Bias reduction in standard errors for linear regression with multi-stage samples. Survey Methodology, 28(2), 169-181.
Cameron, A. C., \& Miller, D. L. (2015). A Practitioner's Guide to Cluster-Robust Inference. Journal of Human Resources, 50(2), 317-372. doi:10.3368/jhr.50.2.317

Imbens, G. W., \& Kolesar, M. (2016). Robust standard errors in small samples: Some practical advice. Review of Economics and Statistics, 98(4), 701-712. doi:10.1162/rest_a_00552
Liang, K.-Y., \& Zeger, S. L. (1986). Longitudinal data analysis using generalized linear models. Biometrika, 73(1), 13-22. doi:10.1093/biomet/73.1.13

Pustejovsky, J. E. \& Tipton, E. (2018). Small sample methods for cluster-robust variance estimation and hypothesis testing in fixed effects models. Journal of Business and Economic Statistics, 36(4), 672-683. doi:10.1080/07350015.2016.1247004

See Also

vcovCR.lm, vcovCR.plm, vcovCR.glm, vcovCR.gls, vcovCR.lme, vcovCR.lmerMod, vcovCR.robu, vcovCR.rma.uni, vcovCR.rma.mv

Examples

```
# simulate design with cluster-dependence
m <- 8
cluster <- factor(rep(LETTERS[1:m], 3 + rpois(m, 5)))
n <- length(cluster)
x <- matrix(rnorm(3 * n), n, 3)
nu <- rnorm(m)[cluster]
e <- rnorm(n)
y <- X %*% c(.4, .3, -.3) + nu + e
dat <- data.frame(y, X, cluster, row = 1:n)
# fit linear model
lm_fit <- lm(y ~ X1 + X2 + X3, data = dat)
vcov(lm_fit)
# cluster-robust variance estimator with CR2 small-sample correction
vcovCR(lm_fit, cluster = dat$cluster, type = "CR2")
# compare small-sample adjustments
CR_types <- paste0("CR",c("0","1","1S","2","3"))
sapply(CR_types, function(type)
```

```
sqrt(diag(vcovCR(lm_fit, cluster = dat$cluster, type = type))))
```

vcovCR.geeglm Cluster-robust variance-covariance matrix for a geeglm object.

Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from an geeglm object.

Usage

```
    ## S3 method for class 'geeglm'
    vcovCR(
        obj,
        cluster,
        type,
        target = NULL,
        inverse_var = NULL,
        form = "sandwich",
    )
```


Arguments

obj	Fitted model for which to calculate the variance-covariance matrix
cluster	Expression or vector indicating which observations belong to the same cluster. Required for geeglm objects.
type	Character string specifying which small-sample adjustment should be used, with available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "De- tails" section of vcovCR for further information.
target	Optional matrix or vector describing the working variance-covariance model used to calculate the CR2 and CR4 adjustment matrices. If a vector, the target matrix is assumed to be diagonal. If not specified, the target is taken to be the estimated variance function.
inverse_var	Optional logical indicating whether the weights used in fitting the model are inverse-variance. If not specified, vcovCR will attempt to infer a value.
form	Controls the form of the returned matrix. The default "sandwich" will return the sandwich variance-covariance matrix. Alternately, setting form = "meat" will return only the meat of the sandwich and setting form = B, where B is a matrix of appropriate dimension, will return the sandwich variance-covariance matrix calculated using B as the bread. form = "estfun" will return the (appropriately
scaled) estimating function, the transposed crossproduct of which is equal to the	
sandwich variance-covariance matrix.	

Value

An object of class $c($ "vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

vcovCR

Examples

```
if (requireNamespace("geepack", quietly = TRUE)) {
    library(geepack)
    data(dietox, package = "geepack")
    dietox$Cu <- as.factor(dietox$Cu)
    mf <- formula(Weight ~ Cu * (Time + I(Time^2) + I(Time^3)))
    gee1 <- geeglm(mf, data=dietox, id=Pig, family=poisson("identity"), corstr="ar1")
    V_CR <- vcovCR(gee1, cluster = dietox$Pig, type = "CR2")
    coef_test(gee1, vcov = V_CR, test = "Satterthwaite")
}
```

 vcovCR.glm Cluster-robust variance-covariance matrix for a glm object.

Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from an glm object.

Usage

```
## S3 method for class 'glm'
    vcovCR(
        obj,
        cluster,
        type,
        target = NULL,
        inverse_var = NULL,
        form = "sandwich",
    )
```


Arguments

obj Fitted model for which to calculate the variance-covariance matrix
cluster Expression or vector indicating which observations belong to the same cluster. Required for glm objects.
type Character string specifying which small-sample adjustment should be used, with available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "Details" section of vcovCR for further information.
target Optional matrix or vector describing the working variance-covariance model used to calculate the CR2 and CR4 adjustment matrices. If a vector, the target matrix is assumed to be diagonal. If not specified, the target is taken to be the estimated variance function.
inverse_var Optional logical indicating whether the weights used in fitting the model are inverse-variance. If not specified, vcovCR will attempt to infer a value.
form Controls the form of the returned matrix. The default "sandwich" will return the sandwich variance-covariance matrix. Alternately, setting form = "meat" will return only the meat of the sandwich and setting form $=B$, where B is a matrix of appropriate dimension, will return the sandwich variance-covariance matrix calculated using B as the bread. form = "estfun" will return the (appropriately scaled) estimating function, the transposed crossproduct of which is equal to the sandwich variance-covariance matrix.
... Additional arguments available for some classes of objects.

Value

An object of class c("vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

> vcovCR

Examples

```
if (requireNamespace("geepack", quietly = TRUE)) {
    data(dietox, package = "geepack")
    dietox$Cu <- as.factor(dietox$Cu)
    weight_fit <- glm(Weight ~ Cu * poly(Time, 3), data=dietox, family = "quasipoisson")
    V_CR <- vcovCR(weight_fit, cluster = dietox$Pig, type = "CR2")
    coef_test(weight_fit, vcov = V_CR, test = "Satterthwaite")
}
```

vcovCR.gls Cluster-robust variance-covariance matrix for a gls object.

Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from a gls object.

Usage

\#\# S3 method for class 'gls'
vcovCR(obj, cluster, type, target, inverse_var, form = "sandwich", ...)

Arguments

obj	Fitted model for which to calculate the variance-covariance matrix
cluster	Optional expression or vector indicating which observations belong to the same cluster. If not specified, will be set to getGroups (obj).
type	Character string specifying which small-sample adjustment should be used, with available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "De- tails" section of vcovCR for further information.
target	Optional matrix or vector describing the working variance-covariance model used to calculate the CR2 and CR4 adjustment matrices. If not specified, the target is taken to be the estimated variance-covariance structure of the gls object.
inverse_var	Optional logical indicating whether the weights used in fitting the model are inverse-variance. If not specified, vcovCR will attempt to infer a value.
form	Controls the form of the returned matrix. The default "sandwich" will return the sandwich variance-covariance matrix. Alternately, setting form = "meat" will return only the meat of the sandwich and setting form = B, where B is a matrix of appropriate dimension, will return the sandwich variance-covariance matrix calculated using B as the bread. form = "estfun" will return the (appropriately
scaled) estimating function, the transposed crossproduct of which is equal to the	

Value

An object of class $c($ "vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

vcovCR

Examples

```
if (requireNamespace("nlme", quietly = TRUE)) {
    library(nlme)
    data(Ovary, package = "nlme")
    Ovary$time_int <- 1:nrow(Ovary)
    lm_AR1 <- gls(follicles ~ sin(2*pi*Time) + cos(2*pi*Time), data = Ovary,
            correlation = corAR1(form = ~ time_int | Mare))
    vcovCR(lm_AR1, type = "CR2")
}
```

vcovCR.ivreg Cluster-robust variance-covariance matrix for an ivreg object.

Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from an ivreg object fitted from the AER package or the ivreg package.

Usage

```
    ## S3 method for class 'ivreg'
    vcovCR(
        obj,
        cluster,
        type,
        target = NULL,
        inverse_var = FALSE,
        form = "sandwich",
    )
```


Arguments

obj Fitted model for which to calculate the variance-covariance matrix
cluster Expression or vector indicating which observations belong to the same cluster. Required for ivreg objects.
type Character string specifying which small-sample adjustment should be used, with available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "Details" section of vcovCR for further information.
target Optional matrix or vector describing the working variance-covariance model used to calculate the CR2 and CR4 adjustment matrices. If a vector, the target matrix is assumed to be diagonal. If not specified, the target is taken to be an identity matrix.
inverse_var Not used for ivreg objects.
form Controls the form of the returned matrix. The default "sandwich" will return the sandwich variance-covariance matrix. Alternately, setting form = "meat" will return only the meat of the sandwich and setting form $=B$, where B is a matrix of appropriate dimension, will return the sandwich variance-covariance matrix calculated using B as the bread. form = "estfun" will return the (appropriately scaled) estimating function, the transposed crossproduct of which is equal to the sandwich variance-covariance matrix.
... Additional arguments available for some classes of objects.

Details

For any "ivreg" objects fitted via the ivreg function from the ivreg package, only traditional 2SLS regression method (method = "OLS") is supported. clubSandwich currently cannot support robustregression methods such as M-estimation (method $=" \mathrm{M} ")$ or MM-estimation (method = "MM").

Value

An object of class $c($ "vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

> vcovCR

Examples

```
if (requireNamespace("AER", quietly = TRUE)) withAutoprint({
    library(AER)
    data("CigarettesSW")
    Cigs <- within(CigarettesSW, {
        rprice <- price/cpi
        rincome <- income/population/cpi
        tdiff <- (taxs - tax)/cpi
    })
    iv_fit_AER <- AER::ivreg(log(packs) ~ log(rprice) + log(rincome) |
                        log(rincome) + tdiff + I(tax/cpi), data = Cigs)
    vcovCR(iv_fit_AER, cluster = Cigs$state, type = "CR2")
    coef_test(iv_fit_AER, vcov = "CR2", cluster = Cigs$state)
})
pkgs_available <-
    requireNamespace("AER", quietly = TRUE) &
    requireNamespace("ivreg", quietly = TRUE)
if (pkgs_available) withAutoprint ({
data("CigarettesSW")
```

```
    Cigs <- within(CigarettesSW, {
        rprice <- price/cpi
        rincome <- income/population/cpi
        tdiff <- (taxs - tax)/cpi
        })
iv_fit_ivreg <- ivreg::ivreg(log(packs) ~ log(rprice) + log(rincome) |
                            log(rincome) + tdiff + I(tax/cpi), data = Cigs)
    vcovCR(iv_fit_ivreg, cluster = Cigs$state, type = "CR2")
    coef_test(iv_fit_ivreg, vcov = "CR2", cluster = Cigs$state)
})
```

vcovCR.1m Cluster-robust variance-covariance matrix for an lm object.

Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from an lm object.

Usage

```
    ## S3 method for class 'lm'
    vcovCR(
        obj,
        cluster,
        type,
        target = NULL,
        inverse_var = NULL,
        form = "sandwich",
    )
```


Arguments

obj Fitted model for which to calculate the variance-covariance matrix
cluster Expression or vector indicating which observations belong to the same cluster. Required for 1m objects.
type Character string specifying which small-sample adjustment should be used, with available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "Details" section of vcovCR for further information.
target Optional matrix or vector describing the working variance-covariance model used to calculate the CR2 and CR4 adjustment matrices. If a vector, the target matrix is assumed to be diagonal. If not specified, the target is taken to be an identity matrix.
inverse_var Optional logical indicating whether the weights used in fitting the model are inverse-variance. If not specified, vcovCR will attempt to infer a value.
form Controls the form of the returned matrix. The default "sandwich" will return the sandwich variance-covariance matrix. Alternately, setting form = "meat" will return only the meat of the sandwich and setting form $=B$, where B is a matrix of appropriate dimension, will return the sandwich variance-covariance matrix calculated using B as the bread. form = "estfun" will return the (appropriately scaled) estimating function, the transposed crossproduct of which is equal to the sandwich variance-covariance matrix.
... Additional arguments available for some classes of objects.

Value

An object of class c("vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

vcovCR

Examples

```
data("ChickWeight", package = "datasets")
lm_fit <- lm(weight ~ Time + Diet:Time, data = ChickWeight)
vcovCR(lm_fit, cluster = ChickWeight$Chick, type = "CR2")
if (requireNamespace("plm", quietly = TRUE)) withAutoprint({
    data("Produc", package = "plm")
    lm_individual <- lm(log(gsp) ~ 0 + state + log(pcap) + log(pc) + log(emp) + unemp, data = Produc)
    individual_index <- !grepl("state", names(coef(lm_individual)))
    vcovCR(lm_individual, cluster = Produc$state, type = "CR2")[individual_index,individual_index]
    # compare to plm()
    plm_FE <- plm::plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
                        data = Produc, index = c("state","year"),
                        effect = "individual", model = "within")
    vcovCR(plm_FE, type="CR2")
})
```

vcovCR.1me Cluster-robust variance-covariance matrix for an lme object.

Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from a lme object.

Usage

```
\#\# S3 method for class 'lme'
vcovCR(obj, cluster, type, target, inverse_var, form = "sandwich", ...)
```


Arguments

obj	Fitted model for which to calculate the variance-covariance matrix Optional expression or vector indicating which observations belong to the same cluster. If not specified, will be set to getGroups (obj).
type	Character string specifying which small-sample adjustment should be used, with available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "De- tails" section of vcovCR for further information.
target	Optional matrix or vector describing the working variance-covariance model used to calculate the CR2 and CR4 adjustment matrices. If not specified, the target is taken to be the estimated variance-covariance structure of the lme object.
inverse_var	Optional logical indicating whether the weights used in fitting the model are inverse-variance. If not specified, vcovCR will attempt to infer a value.
form	Controls the form of the returned matrix. The default "sandwich" will return the sandwich variance-covariance matrix. Alternately, setting form = "meat" will return only the meat of the sandwich and setting form = B, where B is a matrix of appropriate dimension, will return the sandwich variance-covariance matrix
calculated using B as the bread. form = "estfun" will return the (appropriately	
scaled) estimating function, the transposed crossproduct of which is equal to the	
sandwich variance-covariance matrix.	

Value

An object of class $c(" v c o v C R ", " c l u b S a n d w i c h ")$, which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

vcovCR

Examples

```
if (requireNamespace("nlme", quietly = TRUE)) {
    library(nlme)
    rat_weight <- lme(weight ~ Time * Diet, data=BodyWeight, ~ Time | Rat)
    vcovCR(rat_weight, type = "CR2")
}
pkgs_available <-
    requireNamespace("nlme", quietly = TRUE) &
    requireNamespace("mlmRev", quietly = TRUE)
```

```
if (pkgs_available) {
    data(egsingle, package = "mlmRev")
    subset_ids <- levels(egsingle$schoolid)[1:10]
    egsingle_subset <- subset(egsingle, schoolid %in% subset_ids)
    math_model <- lme(math ~ year * size + female + black + hispanic,
                        random = list(~ year | schoolid, ~ 1 | childid),
                        data = egsingle_subset)
    vcovCR(math_model, type = "CR2")
}
```

vcovCR.lmerMod Cluster-robust variance-covariance matrix for an lmerMod object.

Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from merMod object.

Usage

\#\# S3 method for class 'lmerMod'
vcovCR(obj, cluster, type, target, inverse_var, form = "sandwich", ...)

Arguments

obj Fitted model for which to calculate the variance-covariance matrix
cluster Optional expression or vector indicating which observations belong to the same cluster. If not specified, will be set to getGroups (obj).
type Character string specifying which small-sample adjustment should be used, with available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "Details" section of vcovCR for further information.
target Optional matrix or vector describing the working variance-covariance model used to calculate the CR2 and CR4 adjustment matrices. If not specified, the target is taken to be the estimated variance-covariance structure of the lmerMod object.
inverse_var Optional logical indicating whether the weights used in fitting the model are inverse-variance. If not specified, vcovCR will attempt to infer a value.
form Controls the form of the returned matrix. The default "sandwich" will return the sandwich variance-covariance matrix. Alternately, setting form = "meat" will return only the meat of the sandwich and setting form $=B$, where B is a matrix of appropriate dimension, will return the sandwich variance-covariance matrix
calculated using B as the bread. form = "estfun" will return the (appropriately scaled) estimating function, the transposed crossproduct of which is equal to the sandwich variance-covariance matrix.
... Additional arguments available for some classes of objects.

Value

An object of class c("vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

```
vcovCR
```


Examples

```
if (requireNamespace("lme4", quietly = TRUE)) {
library(lme4)
sleep_fit <- lmer(Reaction ~ Days + (Days | Subject), sleepstudy)
vcovCR(sleep_fit, type = "CR2")
}
pkgs_available <-
        requireNamespace("lme4", quietly = TRUE) &
        requireNamespace("mlmRev", quietly = TRUE)
    if (pkgs_available) {
    data(egsingle, package = "mlmRev")
    subset_ids <- levels(egsingle$schoolid)[1:10]
    math_model <- lmer(math ~ year * size + female + black + hispanic
            + (1 | schoolid) + (1 | childid),
            data = egsingle, subset = schoolid %in% subset_ids)
vcovCR(math_model, type = "CR2")
}
```

vcovCR.mlm

Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from an mlm object.

Usage

```
## S3 method for class 'mlm'
vcovCR(obj, cluster, type, target, inverse_var, form = "sandwich", ...)
```


Arguments

obj Fitted model for which to calculate the variance-covariance matrix
cluster Optional expression or vector indicating which observations belong to the same cluster. If not specified, each row of the data will be treated as a separate cluster.
type Character string specifying which small-sample adjustment should be used, with available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "Details" section of vcovCR for further information.
target Optional matrix or vector describing the working variance-covariance model used to calculate the CR2 and CR4 adjustment matrices. If not specified, the target is taken to be an identity matrix.
inverse_var Optional logical indicating whether the weights used in fitting the model are inverse-variance. If not specified, vcovCR will attempt to infer a value.
form Controls the form of the returned matrix. The default "sandwich" will return the sandwich variance-covariance matrix. Alternately, setting form = "meat" will return only the meat of the sandwich and setting form $=B$, where B is a matrix of appropriate dimension, will return the sandwich variance-covariance matrix calculated using B as the bread. form = "estfun" will return the (appropriately scaled) estimating function, the transposed crossproduct of which is equal to the sandwich variance-covariance matrix.
... Additional arguments available for some classes of objects.

Value

An object of class c("vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

vcovCR

Examples

```
iris_fit <- lm(cbind(Sepal.Length, Sepal.Width) ~ Species +
    Petal.Length + Petal.Width, data = iris)
Vcluster <- vcovCR(iris_fit, type = "CR2")
Vcluster
```


Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from a plm object.

```
Usage
    ## S3 method for class 'plm'
    vcovCR(
        obj,
        cluster,
        type,
        target,
        inverse_var,
        form = "sandwich",
        ignore_FE = FALSE,
)
```


Arguments

$\left.\begin{array}{ll}\text { obj } & \text { Fitted model for which to calculate the variance-covariance matrix }\end{array}\right]$| Optional character string, expression, or vector indicating which observations |
| :--- |
| belong to the same cluster. For fixed-effect models that include individual ef- |
| fects or time effects (but not both), the cluster will be taken equal to the in- |
| cluded fixed effects if not otherwise specified. Clustering on individuals can |
| also be obtained by specifying the name of the individual index (e.g., cluster |
| $=$ "state") or cluster = "individual"; clustering on time periods can be ob- |
| tained by specifying the name of the time index (e.g., cluster = "year") or |
| cluster = "time"; if a group index is specified, clustering on groups (in which |
| individuals are nested) can be obtained by specifying the name of the group in- |
| dex or cluster = "group". For random-effects models, the cluster will be taken |
| equal to the included random effect identifier if not otherwise specified. |

form \begin{tabular}{l}
Controls the form of the returned matrix. The default "sandwich" will return the

sandwich variance-covariance matrix. Alternately, setting form = "meat" will

return only the meat of the sandwich and setting form = B, where B is a matrix

of appropriate dimension, will return the sandwich variance-covariance matrix

calculated using B as the bread. form = "estfun" will return the (appropriately

scaled) estimating function, the transposed crossproduct of which is equal to the

sandwich variance-covariance matrix.

ignore_FE

Optional logical controlling whether fixed effects are ignored when calculating

small-sample adjustments in models where fixed effects are estimated through

absorption.

\quad

Additional arguments available for some classes of objects.
\end{tabular}

Value

An object of class c("vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

vcovCR

Examples

```
if (requireNamespace("plm", quietly = TRUE)) withAutoprint({
    library(plm)
    # fixed effects
    data("Produc", package = "plm")
    plm_FE <- plm(log(gsp) ~ log(pcap) + log(pc) + log(emp) + unemp,
                data = Produc, index = c("state","year","region"),
                    effect = "individual", model = "within")
    vcovCR(plm_FE, type="CR2")
    vcovCR(plm_FE, type = "CR2", cluster = Produc$region) # clustering on region
    # random effects
    plm_RE <- update(plm_FE, model = "random")
    vcovCR(plm_RE, type = "CR2")
    vcovCR(plm_RE, type = "CR2", cluster = Produc$region) # clustering on region
    # nested random effects
    plm_nested <- update(plm_FE, effect = "nested", model = "random")
    vcovCR(plm_nested, type = "CR2") # clustering on region
})
pkgs_available <- requireNamespace("plm", quietly = TRUE) & requireNamespace("AER", quietly = TRUE)
if (pkgs_available) withAutoprint({
    # first differencing
    data(Fatalities, package = "AER")
    Fatalities <- within(Fatalities, {
        frate <- 10000 * fatal / pop
```

```
        drinkagec <- cut(drinkage, breaks = 18:22, include.lowest = TRUE, right = FALSE)
        drinkagec <- relevel(drinkagec, ref = 4)
    })
    plm_FD <- plm(frate ~ beertax + drinkagec + miles + unemp + log(income),
        data = Fatalities, index = c("state", "year"),
        model = "fd")
    vcovHC(plm_FD, method="arellano", type = "sss", cluster = "group")
    vcovCR(plm_FD, type = "CR1S")
    vcovCR(plm_FD, type = "CR2")
})
```

```
vcovCR.rma.mv Cluster-robust variance-covariance matrix for a rma.mv object.
```


Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from a rma.mv object.

Usage

\#\# S3 method for class 'rma.mv'
vcovCR(obj, cluster, type, target, inverse_var, form = "sandwich", ...)

Arguments

obj	Fitted model for which to calculate the variance-covariance matrix Optional expression or vector indicating which observations belong to the same cluster. If not specified, will be set to the factor in the random-effects structure with the fewest distinct levels. Caveat emptor: the function does not check that the random effects are nested.		
Character string specifying which small-sample adjustment should be used, with			
available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "De-			
tails" section of vcovCR for further information.			
Optional matrix or vector describing the working variance-covariance model			
used to calculate the CR2 and CR4 adjustment matrices. If not specified, the			
target is taken to be the estimated variance-covariance structure of the rma.mv			
object.		\quad	Optional logical indicating whether the weights used in fitting the model are
:---			
inverse-variance. If not specified, vcovCR will attempt to infer a value.			

calculated using B as the bread. form = "estfun" will return the (appropriately scaled) estimating function, the transposed crossproduct of which is equal to the sandwich variance-covariance matrix.
... Additional arguments available for some classes of objects.

Value

An object of class c("vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

vcovCR

Examples

```
pkgs_available <-
    requireNamespace("metafor", quietly = TRUE) &
    requireNamespace("metadat", quietly = TRUE)
if (pkgs_available) withAutoprint({
library(metafor)
data(dat.assink2016, package = "metadat")
mfor_fit <- rma.mv(yi ~ year + deltype,
            v = vi, random = ~ 1 | study / esid,
            data = dat.assink2016)
mfor_fit
mfor_CR2 <- vcovCR(mfor_fit, type = "CR2")
mfor_CR2
coef_test(mfor_fit, vcov = mfor_CR2, test = c("Satterthwaite", "saddlepoint"))
Wald_test(mfor_fit, constraints = constrain_zero(3:4), vcov = mfor_CR2)
})
```


Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from a rma. uni object.

Usage

```
## S3 method for class 'rma.uni'
vcovCR(obj, cluster, type, target, inverse_var, form = "sandwich", ...)
```


Arguments

obj	Fitted model for which to calculate the variance-covariance matrix cluster Expression or vector indicating which observations belong to the same cluster. Required for rma. uni objects.
type	Character string specifying which small-sample adjustment should be used, with available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "De- tails" section of vcovCR for further information.
Optional matrix or vector describing the working variance-covariance model	
used to calculate the CR2 and CR4 adjustment matrices. If not specified, the target	
is taken to be diagonal with entries equal to the estimated marginal variance of	
the effect sizes.	

... Additional arguments available for some classes of objects.

Value

An object of class c("vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

```
vcovCR
```


Examples

```
pkgs_available <-
    requireNamespace("metafor", quietly = TRUE) &
    requireNamespace("metadat", quietly = TRUE)
if (pkgs_available) withAutoprint({
library(metafor)
data(dat.assink2016, package = "metadat")
mfor_fit <- rma.uni(yi ~ year + deltype, vi = vi,
```

```
            data = dat.assink2016)
mfor_fit
mfor_CR2 <- vcovCR(mfor_fit, type = "CR2", cluster = dat.assink2016$study)
mfor_CR2
coef_test(mfor_fit, vcov = mfor_CR2, test = c("Satterthwaite", "saddlepoint"))
Wald_test(mfor_fit, constraints = constrain_zero(2:4), vcov = mfor_CR2)
})
```

vcovCR.robu Cluster-robust variance-covariance matrix for a robu object.

Description

vcovCR returns a sandwich estimate of the variance-covariance matrix of a set of regression coefficient estimates from a robu object.

Usage

\#\# S3 method for class 'robu'
vcovCR(obj, cluster, type, target, inverse_var, form = "sandwich", ...)

Arguments

obj	Fitted model for which to calculate the variance-covariance matrix
cluster	Optional expression or vector indicating which observations belong to the same cluster. If not specified, will be set to the studynum used in fitting the robu object. Character string specifying which small-sample adjustment should be used, with available options "CR0", "CR1", "CR1p", "CR1S", "CR2", or "CR3". See "De- tails" section of vcovCR for further information.
type	Optional matrix or vector describing the working variance-covariance model used to calculate the CR2 and CR4 adjustment matrices. If not specified, the target is taken to be the inverse of the estimated weights used in fitting the robu object.
inverse_var	Optional logical indicating whether the weights used in fitting the model are inverse-variance. If not specified, vcovCR will attempt to infer a value.
form	Controls the form of the returned matrix. The default "sandwich" will return the sandwich variance-covariance matrix. Alternately, setting form = "meat" will return only the meat of the sandwich and setting form = B, where B is a matrix of appropriate dimension, will return the sandwich variance-covariance matrix
calculated using B as the bread. form = "estfun" will return the (appropriately	

Value

An object of class c("vcovCR", "clubSandwich"), which consists of a matrix of the estimated variance of and covariances between the regression coefficient estimates.

See Also

vcovCR

Examples

```
if (requireNamespace("robumeta", quietly = TRUE)) withAutoprint({
library(robumeta)
data(hierdat)
robu_fit <- robu(effectsize ~ binge + followup + sreport + age,
            data = hierdat, studynum = studyid,
            var.eff.size = var, modelweights = "HIER")
robu_fit
robu_CR2 <- vcovCR(robu_fit, type = "CR2")
robu_CR2
coef_test(robu_fit, vcov = robu_CR2, test = c("Satterthwaite", "saddlepoint"))
Wald_test(robu_fit, constraints = constrain_zero(c(2,4)), vcov = robu_CR2)
Wald_test(robu_fit, constraints = constrain_zero(2:5), vcov = robu_CR2)
})
```

Wald_test Test parameter constraints in a fitted linear regression model

Description

Wald_test reports Wald-type tests of linear contrasts from a fitted linear regression model, using a sandwich estimator for the variance-covariance matrix and a small sample correction for the pvalue. Several different small-sample corrections are available.

Usage

Wald_test(obj, constraints, vcov, test = "HTZ", tidy = FALSE, ...)

Arguments

obj

Fitted model for which to calculate Wald tests.
constraints List of one or more constraints to test. See details and examples.
vcov Variance covariance matrix estimated using vcovCR or a character string specifying which small-sample adjustment should be used to calculate the variancecovariance.

test	Character vector specifying which small-sample correction(s) to calculate. The following corrections are available: "chi-sq", "Naive-F", "Naive-Fp", "HTA", "HTB", "HTZ", "EDF", "EDT". Default is "HTZ".
tidy	Logical value controlling whether to tidy the test results. If constraints is a list with multiple constraints, the result will be coerced into a data frame when tidy $=$ TRUE.
\ldots	Further arguments passed to vcovCR, which are only needed if vcov is a charac- ter string.

Details

Constraints can be specified directly as $\mathrm{q} X \mathrm{p}$ matrices or indirectly through constrain_equal, constrain_zero, or constrain_pairwise

Value

A list of test results.

See Also

vcovCR, constrain_equal, constrain_zero, constrain_pairwise

Examples

```
if (requireNamespace("carData", quietly = TRUE)) withAutoprint({
data(Duncan, package = "carData")
Duncan$cluster <- sample(LETTERS[1:8], size = nrow(Duncan), replace = TRUE)
Duncan_fit <- lm(prestige ~ 0 + type + income + type:income + type:education, data=Duncan)
# Note that type:income terms are interactions because main effect of income is included
# but type:education terms are separate slopes for each unique level of type
# Test equality of intercepts
Wald_test(Duncan_fit,
    constraints = constrain_equal(1:3),
    vcov = "CR2", cluster = Duncan$cluster)
# Test equality of type-by-education slopes
Wald_test(Duncan_fit,
    constraints = constrain_equal(":education", reg_ex = TRUE),
    vcov = "CR2", cluster = Duncan$cluster)
# Pairwise comparisons of type-by-education slopes
Wald_test(Duncan_fit,
    constraints = constrain_pairwise(":education", reg_ex = TRUE),
    vcov = "CR2", cluster = Duncan$cluster)
# Test type-by-income interactions
Wald_test(Duncan_fit,
```

```
    constraints = constrain_zero(":income", reg_ex = TRUE),
    vcov = "CR2", cluster = Duncan$cluster)
# Pairwise comparisons of type-by-income interactions
constraints = constrain_pairwise(":income", reg_ex = TRUE, with_zero = TRUE),
    vcov = "CR2", cluster = Duncan$cluster)
```

Wald_test(Duncan_fit,
\})

Index

```
* datasets
    AchievementAwardsRCT, 3
    dropoutPrevention,8
    MortalityRates, 15
    SATcoaching,18
AchievementAwardsRCT, 3
coef_test,4
conf_int,5
constrain_equal, 14,41
constrain_equal (constraint_matrices), 6
constrain_pairwise, 14,41
constrain_pairwise
    (constraint_matrices),6
constrain_zero, 14,41
constrain_zero(constraint_matrices), 6
constraint_matrices, }
dropoutPrevention, 8
findCluster.rma.mv, 10
geeglm, 22
glm, 19, 23
gls, 19, 25
impute_covariance_matrix, 10
ivreg, 27
linear_contrast,13
lm, 19, 28
lme, 19, 29
merMod, 31
MortalityRates, 15
pattern_covariance_matrix,16
plm, 19, 34
rma.mv, 19, 36
```

rma.uni, 19, 37
robu, 19, 39
SATcoaching, 18
vcalc, 11,16
vcovCR, 4-6, 14, 19, 19, 22-41
vcovCR.geeglm, 22
vcovCR.glm, 21, 23
vcovCR.gls, 21, 25
vcovCR.ivreg, 26
vcovCR.1m, 21, 28
vcovCR.lme, 21, 29
vcovCR.1merMod, 21, 31
vcovCR.mlm, 32
vcovCR.plm, 21, 34
vcovCR.rma.mv, 21, 36
vcovCR.rma.uni, 21, 37
vcovCR. robu, 21, 39
vcovHC, 20
Wald_test, 6, 7, 40

