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bgmm-package Belief-Based Gaussian Mixture Modeling

Description

This package implements partially supervised mixture modeling methods: soft-label and belief-
based modeling, the semi-supervised methods and for completeness also unsupervised and fully
supervised methods for mixture modeling.

Details

Package: bgmm
Type: Package
Version: 1.8
Date: 2017-02-22
License: GPL-3
LazyLoad: yes

For short overview see the webpage http://bgmm.molgen.mpg.de/rapBGMM/.

Author(s)

Przemyslaw Biecek \& Ewa Szczurek

Maintainer: Przemyslaw Biecek <P.Biecek@mimuw.edu.pl>
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References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

See Also

Package for unsupervised learning of Gaussian mixture model link{mclust}, methods for super-
vised learning link{MASS::lda()}, link{MASS::qda()}.

Examples

## Do not run
## It could take more than one minute
#demo(bgmm)

CellCycle Data for clustering of 384 cell cycle genes into five clusters corre-
sponding to cell cycle phases

Description

Time course expression data for 384 cell cycle genes (Cho et al., 1998). Literature examples of
genes that should, and of genes that should not peak at each time point are given. For each cycle
phase, there is a characteristic binary profile, stating when the phase occurs.

Usage

data(CellCycle)

Format

CellCycleData list: 17x384 CellCycleBeliefs list: 17x (35x2) CellCycleCenters matrix: 5x17 Cell-
CycleClass vector: 384

Details

CellCycleData: A list, where each entry corresponds to one time-point. A given time point en-
try contains a vector with expression ratios for 384 cell cycle genes measured in this time point.
CellCycleBeliefs: A list, where each entry corresponds to one time-point. A given time point
entry gives the certainty (belief/plausibility) for each out of 35 example genes. Out of the genes,
seven are known to peak in this time point and the remaining 28 are known to peak in other cycle
phases. CellCycleCenters: A matrix, where the columns are the 17 time-points and the rows to
the five cell phase clusters. A given entry in the matrix is equal to 1 if the genes from the cluster
should peak in the time point, and 0 otherwise. CellCycleClass:Gives the true cluster for each
gene. Each cluster corresponds to a cell cycle phase.
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Author(s)

Ewa Szczurek

References

Cho, R., Campbell, M., Winzeler, E., Steinmetz, L., Conway, A., Wodicka, L., Wolfsberg, T.,
Gabrielian, A., Landsman, D., Lockhart, D., and Davis, R. (1998). A genome-wide transcriptional
analysis of the mitotic cell cycle. Molecular Cell, 2(1), 65–73.

See Also

miRNA,Ste12

Examples

library(bgmm)
data(CellCycle)
print(CellCycleData)
print(CellCycleBeliefs)
print(CellCycleCenters)
print(CellCycleClass)

chooseModels Selecting a subset of fitted models

Description

The function chooseModels extracts a sublist of models that match constraints on the number of
components or on the model structure. The function chooseOptimal returns the model which is the
best according the given model selection criteria.

Usage

chooseModels(models, kList = NULL, struct = NULL)

chooseOptimal(models, penalty=2, ...)

Arguments

models an object of the class mModelList which represents a list of fitted models.

kList a vector which specifies the requested numbers of Gaussian components (con-
straints on the number of components).

struct a vector which specifies four letter abbreviations of names of the requested
model structures (constraints on the model structure).

penalty a penalty parameter in the GIC criteria. This parameter can be a single number
or a string, either "BIC" or "AIC".

... other arguments that will be passed to the getGIC function.
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Details

The function chooseModels() extracts a sublist of models from the models argument. The returned
sublist is also an object of the class mModelList and is composed of models that simultaneously
satisfy the restrictions of the number of Gaussian components defined by kList and restrictions of
the model structure defined by struct. If the argument kList is set to NULL then no restrictions
of the number of components are applied, same with the argument struct.

The function chooseOptimal() returns an object of the class mModel which is the single model that
has the best (smallest) GIC score.

Value

An object of the class mModelList or mModel.

Author(s)

Przemyslaw Biecek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

Examples

simulated = simulateData(d=2, k=3, n=100, m=50, cov="0", within="E", n.labels=2)

models3 = beliefList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
kList=2:4, mean="D", within="D")

plotGIC(models3, penalty="BIC")

## Do not run
## It could take more than one minute
# simulated = simulateData(d=2, k=3, n=300, m=60, cov="0", within="E", n.labels=2)
#
# models3 = beliefList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
# kList=2:7, mean="D")
# plotGIC(models3, penalty="BIC")
#
# models4 = chooseModels(models3, kList=2:5, struct=c("DDDD","DDED","DDE0"))
# plot(models4)
# plotGIC(models4, penalty="BIC")
#
# model4 = chooseOptimal(models3, "BIC")
# plot(model4)
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crossval k-fold cross-validation for the specified model

Description

The function crossval() performes k-fold cross-validation.

Usage

crossval(model = NULL, X = NULL, knowns = NULL, class = NULL,
k = length(unique(class)), B = NULL, P = NULL, model.structure = getModelStructure(),
..., folds = 2, fun = belief)

Arguments

model an object of the class mModel.

X a data.frame with unknown realizations. If not supplied X is extracted from the
model argument.

knowns a data.frame with labeled realizations. If not supplied knowns is extracted from
the model argument.

class, B, P a vector of classes, beliefs and plausibilities. If not supplied they will be ex-
tracted from the model argument.

fun function that will be used for modeling, one of supervised, unsupervised,
belief, soft, semisupervised.

model.structure, k, ...

arguments that will be passed to fun function,

folds number of folds in k-fold cross validation. Cannot be grated that number of
labeled samples.

Details

The function crossval() divides the dataset into k equal subsets, the number of labeled cases
versus number of unlabeled cases is keep as close to constant as possible (the subset are generated
with stratification). Then each subset is used as test set against a train set build from all remaining
sets. In total k new models are estimated thus this procedure is time consuming.

For each model the error is calculated as average absolute differences between the distribution of
estimated posteriors and distribution of beliefs/plausibilities for labeled cases.

Value

The list with three vectors: errors calculated as mean absolute differences between estimated pos-
teriors and initial beliefs for known cases, indexes of folds for both labeled and unlabeled cases.
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Author(s)

Przemyslaw Biecek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

Examples

set.seed(1313)
simulated = simulateData(d=2, k=3, n=300, m=60, cov="0", within="E", n.labels=2)
amodel = belief(X=simulated$X, knowns=simulated$knowns, B=simulated$B, k=4)
str(crossval(model=amodel, folds=6))

amodel = supervised(knowns=rbind(simulated$X, simulated$knowns), class=simulated$Ytrue)
str(crossval(model=amodel, folds=6, fun=supervised))

DEprobs Signed probabilities of differential expression

Description

The DEprobs function is an application of mixture modeling to differential gene expression analysis.
The function takes as input a two- or three-component model of one-dimensional gene expression
data. The data is assumed to represent log fold change expression values and be negative when
the corresponding genes are down-regulated. The function calculates probabilities of differential
expression for the data and gives them a sign according to the sign of the data.

Usage

DEprobs(model, verbose=FALSE)

Arguments

model an object of the class mModel,

verbose indicates whether log messeges should be prited out.

Details

Given the input model, the function identifies the component which corresponds to the differentially
expressed genes as the one which looks differential according to the posterior probabilities.

For input models with two Gaussian components the differential component should be the one with
a broader range (encompassing the other), or the one with higher deviation from 0 (we assume the
data are centered around 0).
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For input models with three Gaussian components there are two differential components: one cor-
responding to the down-regulated genes, and one corresponding to the up-regulated genes. Those
components are identified as the ones with the lowest and the highest mean, respectively.

For verbose=TRUE the index of the differential component is printed out.

Value

An list with the following elements:

diff.p.X a vector with the calculated signed differential expression probabilities for the
unlabeled observations in the dataset model$X.

diff.p.knowns a vector with the calculated signed differential expression probabilities for the
unlabeled observations in the dataset model$knowns. For model$knowns=NULL
diff.p.knowns is also NULL(null).

diff.c the index (or two indexes, in case of a three-component input model) of the
identified differential component.

Author(s)

Przemyslaw Biecek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

Examples

data(Ste12)
X = Ste12Data[ match(names(Ste12Data), rownames(Ste12Beliefs), nomatch = 0) ==0 ]
knowns = Ste12Data[rownames(Ste12Beliefs)]
model = belief(X=X, knowns=knowns, B=Ste12Beliefs)
dep=DEprobs(model)
str(dep)

genotypes Fluorescence signals corresponding to a given allele for 333 SNPs

Description

The genotypes dataset describes 333 SNPs. Each SNP is characterized by the presence of one of its
two possible alleles (or the presence of both of them). Therefore, the SNPs can be divided into three
types. The first type corresponds to the SNPs with the first possible allele, the second type with the
second allele, and the third with both alleles. The presence of the alleles is measured experimentally
with fluorescence intensities. The dataset contains the intensities in the slots X and knowns.

15 SNPs in the dataset are given their correct type. These ’known’ SNPs can be used as the input for
the semi-, partially and fully superised modeling methods. They were selected by taking at random



getModelStructure 9

five SNPs per each type. Their intensities are contained in the slot knowns. Their belief/plausibility
values (given in the slot B) of the most probable type (the slot labels) are set to 0.95, and of the
other two types are equal 0.025. The remaining 318 SNPs are kept unlabeled.

Usage

data(genotypes)

Format

X : a matrix with 318 rows (unlabeled SNPs) and 2 columns (alleles) knowns : a matrix with 15
rows (known SNPs) and 2 columns (alleles) B : a matrix with 15 rows (known SNPs) and 3 columns
(types) labels : a vector of length 15 (types of the known SNPs)

Details

The rows of both the slots X and knowns correspond to the SNPs. For each SNP, the values in the
columns represent the intensities of the fluorescence signal corresponding to the alleles of the SNP.
The slot B corresponds to the belief matrix while labels contains the true types for the labeled
SNPs.

References

Takitoh, S. Fujii, S. Mase, Y. Takasaki, J. Yamazaki, T. Ohnishi, Y. Yanagisawa, M. Nakamura, Y.
Kamatani, N., Accurate automated clustering of two-dimensional data for single-nucleotide poly-
morphism genotyping by a combination of clustering methods: evaluation by large-scale real data,
Bioinformatics (2007) Vol. 23, 408–413.

Examples

library(bgmm)
data(gnotypes)

getModelStructure Model structure

Description

This function creates an object which describes constraints over the model parameters.

Usage

getModelStructure(mean = "D", between = "D", within = "D", cov = "D")
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Arguments

Each argument is a single character, by default equal "D" (Different). If argu-
ment is set to "E" (or "0" for the argument cov) then the given parameter is
constrained. By default all arguments are set to "D".

mean="E" forces equality of the means between the components,

meanbetween between="E" forces equality of the covariance matrices among the components,

within within="E" forces equality of variances within each covariance matrix i to some
constant vi and equality of covariances to some constant wi

cov cov="0" forces equality of covariances within each covariance matrix i to "0",

Value

List of four elements specifying the constraints on 1) relations between the component means,
2) relations between the covariance matrices of the model components, 3) relations within each
covariance matrix and 4) the covariances within each matrix. By default, the function returns an
unconstrained structure.

Author(s)

Ewa Szczurek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

Examples

getModelStructure()
getModelStructure(mean="E")

init.model.params Initiation of model parameters

Description

Methods for the initiation of model parameters for the EM algorithm. Two initiation procedures are
implemented. The first procedure is available by setting the argument method='knowns'. It takes
into account only labeled observations and is thus suitable for datasets with a high percentage of
labeled cases. The second is available by setting method='all' and does not take the labeling into
account.

Usage

init.model.params(X = NULL, knowns = NULL, class = NULL,
k = length(unique(class)), method = "all", B = P, P = NULL)
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Arguments

X a data.frame with the unlabeled observations, its rows correspond to the ob-
servations while the columns correspond to variables/data dimensions.

knowns a data.frame with the labeled observations, rows correspond to the observa-
tions while the columns correspond to variables/data dimensions.

B a beliefs matrix with the distribution of beliefs for the labeled observations. If
not specified and the argument P is given, the beliefs matrix is set to the value of
P.

P a matrix of plausibilities, specified only for the labeled observations. The func-
tion assumes that the remaining observations are unlabeled and gives them uni-
formly distributed plausibilities by default. If not specified and the argument B
is given, the plausibilities matrix is set to the value of B.

class class is a vector of labels for the known observations. If not specified, it is
derived from eithter the argument B or P with the use of the MAP rule.

k the desired number of model components.

method a method for parameter initialization, one of following c("knowns","all"),
see the section Details.

Details

For method='knowns', the initialization is based only on the labeled observations. i.e. those obser-
vations which have certain or probable components assigned. The initial model parameters for each
component are estimated in one step from the observations that are assigned to this component (as
in fully supervised learning).

If method='all' (default), the initialization is based on all observations. In this case, to obtain
the initial set of model components, we start by clustering the data using the k-means algorithm
(repeated 10 times to get stable results). The only exception is for one dimensional data. In such
a case the clusters are identified by dividing the data into k equal subsets of observations, where
the subsets are separated by empirical quantiles c(1/2k, 3/2k, 5/2k, ..., (2k-1)/2k). After this initial
clustering each cluster is linked to one model component and initial values for the model parameters
are derived from the clustered observations.

For the partially and semi-supervised methods, correspondence of labels from the initial clustering
algorithm and labels for the observations in the knowns dataset rises a technical problem. The cluster
corresponding to component y should be as close as possible to the set of labeled observations with
label y.

Note that for the unsupervised modeling this problem is irrelevant and any cluster may be used to
initialize any component.

To mach the cluster labels with the labels of model components a greedy heuristic is used. The
heuristic calculates weighted distances between all possible pairs of cluster centers and sets of
observations grouped by their labels. In each step, the pair with a minimal distance is chosen (the
pair: a group of observations with a common label and a cluster, for which the center of the group is
the closest to the center of the cluster). For the chosen pair, the cluster is labeled with the same label
as the group of observations. Then, this pair is removed and the heuristic repeats for the reduced set
of pairs.



12 miRNA

Value

A list with the following elements:

pi a vector of length k with the initial values for the mixing proportions.

mu a matrix with the means’ vectors with the initial values for k components.

cvar a three-dimensional matrix with the covariance matrices with the initial values
for k components.

Author(s)

Przemyslaw Biecek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

Examples

data(genotypes)
initial.params = init.model.params(X=genotypes$X, knowns=genotypes$knowns,
class = genotypes$labels)
str(initial.params)

miRNA miRNA transfection data for miR1 and miR124 target genes

Description

miRNA transfection data (Lim et al., 2005) and knowledge from computational miRNA target pre-
dictions.

Usage

data(miRNA)

Format

miR1Data vector: 117, miR124Data vector: 117, miRNABeliefs matrix of example certainty: 26 x
2, miRNAClass vector: 117

Details

miR1Data Log2 expression ratios of miR1 transfection versus wild type, for 117 genes. miR124Data
Log2 expression ratios of miR124 transfection versus wild type, for 117 genes. miRNABeliefs
Gives the certainty (belief/plausibility) for each out of 26 example miRNA targets to belong to their
cluster. miRNAClass Gives the true cluster for each gene. Cluster 1 corresponds to the experimen-
tally verified targets of miR1. Cluster 2 corresponds to the targets of miR124.



mModel 13

Author(s)

Ewa Szczurek

References

Lim, L. P., Lau, N. C., Garrett-Engele, P., Grimson, A., Schelter, J. M., Castle, J., Bartel, D. P.,
Linsley, P. S., and Johnson, J. M. (2005). Microarray analysis shows that some microRNAs down-
regulate large numbers of target mRNAs. Nature, 433(7027).

See Also

Ste12,CellCycle

Examples

library(bgmm)
data(miRNA)
print(miR1Data)
print(miR124Data)
print(miRNABeliefs)
print(miRNAClass)

mModel Fitting Gaussian Mixture Model

Description

These functions fit different variants of Gaussian mixture models. These variants differ in the
fraction of knowledge utilized into the the fitting procedure.

Usage

belief(X, knowns, B = NULL, k = ifelse(!is.null(B), ncol(B),
ifelse(!is.null(P), ncol(P), length(unique(class)))), P = NULL,
class = map(B), init.params = init.model.params(X, knowns,

B = B, P = P, class = class, k = k), model.structure = getModelStructure(),
stop.likelihood.change = 10^-5, stop.max.nsteps = 100, trace = FALSE,
b.min = 0.025,
all.possible.permutations=FALSE, pca.dim.reduction = NA)

soft(X, knowns, P = NULL, k = ifelse(!is.null(P), ncol(P),
ifelse(!is.null(B), ncol(B), length(unique(class)))), B = NULL,
class = NULL, init.params = init.model.params(X, knowns,

class = class, B = P, k = k),
model.structure = getModelStructure(), stop.likelihood.change = 10^-5,
stop.max.nsteps = 100, trace = FALSE, b.min = 0.025,

all.possible.permutations=FALSE, pca.dim.reduction = NA, ...)
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semisupervised(X, knowns, class = NULL, k = ifelse(!is.null(class),
length(unique(class)), ifelse(!is.null(B), ncol(B), ncol(P))),
B = NULL, P = NULL, ..., init.params = NULL,

all.possible.permutations=FALSE, pca.dim.reduction = NA)

supervised(knowns, class = NULL, k = length(unique(class)), B = NULL, P = NULL,
model.structure = getModelStructure(), ...)

unsupervised(X, k, init.params=init.model.params(X, knowns=NULL, k=k),
model.structure=getModelStructure(), stop.likelihood.change=10^-5,
stop.max.nsteps=100, trace=FALSE, ...)

Arguments

X a data.frame with the unlabeled observations. The rows correspond to the obser-
vations while the columns to variables/dimensions of the data.

knowns a data.frame with the labeled observations. The rows correspond to the observa-
tions while the columns to variables/dimensions of the data.

B a beliefs matrix which specifies the distribution of beliefs for the labeled ob-
servations. The number of rows in B should equal the number of rows in the
data.frame knowns. It is assumed that both the observations in B and in knowns
are given in the same order. Columns correspond to the model components. If
matrix B is provided, the number of columns has to be less or equal k. Internally,
the matrix B is completed to k columns.

P a matrix of plausibilities, i.e., weights of the prior probabilities for the labeled
observations. If matrix P is provided, the number of columns has to be less or
equal k. The came conditions as for B apply.

class a vector of classes/labels for the labeled observations. The number of its unique
values has to be less or equal k.

k a number of components, by default equal to the number of columns of B.
init.params initial values for the estimates of the model parameters (means, variances and

mixing proportions), by default derived with the use of the init.model.params
function.

stop.likelihood.change, stop.max.nsteps

the parameters for the EM algorithms defining the stop criteria, i.e., the mini-
mum required improvement of loglikelihood and the maximum number of steps.

trace if trace=TRUE the loglikelihoods for every step of EM algorithm are printed out.
model.structure

an object returned by the getModelStructure function, which specifies con-
straints for the parameters of the model to be fitted.

b.min this argument is passed to the init.model.params function.
... these arguments will be passed tothe init.model.params function.
all.possible.permutations

If equal TRUE, all possible initial parameters’ permutations of components are
considered. Since there is kList! permutations, model fitting is repeated kList!
times. As a result, only the model with the highest likelihood is returned.
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pca.dim.reduction

Since the fitting for high dimensional space is numerically a bad idea an attempt
to PCA will be performed if pca.dim.reduction !- FALSE. If equal NA then
the target dimension is data driven, if it’s a number then this will be the target
dimension.

Details

In the belief() function, if the argument B is not provided, it is by default initialized from the
argument P. If the argument P is not provided, B is derived from the class argument with the use
of the function get.simple.beliefs() which assigns 1-(k-1)*b.min to the component given by
class and b.min to all remaining components.

In the soft() function, if the argument P is not provided, it is by default initialized from the argu-
ment B. If the argument B is not provided, P is derived from the class argument as in the belief()
function.

In the supervised() function, if the argument class is not provided, it is by default initialized from
argument B or P, taking the label of each observation as its most believed or plausible component
(by the MAP rule).

The number of columns in the beliefs matrix B or in the matrix of plausibilities P may be smaller
than the number of model components defined by the argument k. Such situation corresponds to the
scenario when the user does not know any examples for some component. In other words, this com-
ponent is not used as a label for any observation, and thus can be omitted from the beliefs matrix.
An equivalent would be to include a column for this component and fill it with beliefs/plausibilities
equal 0.

Slots in the returned object are listed in section Value. The returned object differs slighty with re-
spect to the used function. Namely, the belief() function returns an object with the slot B. The
function soft() returns an object with a slot P, while the functions supervised() and semisupervised()
return objects with a slot class instead.

The object returned by the function supervised() does not have the slot X.

Value

An object of the class mModel, with the following slots:

pi a vector with the fitted mixing proportions

mu a matrix with the means’ vectors, fitted for all components

cvar a three-dimensional matrix with the covariance matrices, fitted for all compo-
nents

X the unlabeled observations

knowns the labeled observations

B the beliefs matrix

n the number of all observations

m the number of the unlabeled observations

k the number of fitted model components

d the data dimension
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likelihood the log-likelihood of the fitted model

n.steps the number of steps performed by the EM algorithm

model.structure

the set of constraints kept during the fitting process.

Author(s)

Przemyslaw Biecek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

Examples

data(genotypes)

modelSupervised = supervised(knowns=genotypes$knowns,
class=genotypes$labels)

plot(modelSupervised)

modelSemiSupervised = semisupervised(X=genotypes$X,
knowns=genotypes$knowns, class = genotypes$labels)

plot(modelSemiSupervised)

modelBelief = belief(X=genotypes$X,
knowns=genotypes$knowns, B=genotypes$B)

plot(modelBelief)

modelSoft = soft(X=genotypes$X,
knowns=genotypes$knowns, P=genotypes$B)

plot(modelSoft)

modelUnSupervised = unsupervised(X=genotypes$X, k=3)
plot(modelUnSupervised)

mModelList Fitting Gaussian mixture model or collection of models

Description

These functions fit collection of models of one particular variant/class. Models to be fitted may
differ in the requested number of Gaussian components or in the requested model structure.
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Usage

mModelList(X, knowns, B = NULL, P = NULL, class = NULL, kList = ncol(B),
init.params = NULL, stop.likelihood.change = 10^-5, stop.max.nsteps = 100,
trace = FALSE, mean = c("D", "E"), between = c("D", "E"), within = c("D",
"E"), cov = c("D", "0"), funct = belief, all.possible.permutations = FALSE, ...)

beliefList(..., funct=belief)

softList(..., funct=soft)

semisupervisedList(..., funct=semisupervised)

unsupervisedList(X, kList = 2, ...)

Arguments

X a data.frame with the unlabeled observations. The rows correspond to the obser-
vations while the columns to variables/dimensions of the data.

knowns a data.frame with the labeled observations. The rows correspond to the observa-
tions while the columns to variables/dimensions of the data.

B a beliefs matrix which specifies the distribution of beliefs for the labeled ob-
servations. The number of rows in B should equal the number of rows in the
data.frame knowns. It is assumed that both the observations in B and in knowns
are given in the same order. Columns correspond to the model components. If
matrix B is provided, the number of columns has to be less or equal k. Internally,
the matrix B is completed to k columns.

P a matrix of plausibilities, i.e., weights of the prior probabilities for the labeled
observations. If matrix P is provided, the number of columns has to be less or
equal k. The came conditions as for B apply.

class a vector of classes/labels for the labeled observations. The number of its unique
values has to be less or equal min(kList).

kList a vector or a list with numbers of Gaussian components to fit. By default it is
one number equal to the number of columns of B.

init.params initial values for the estimates of the model parameters (means, variances and
mixing proportions). The initial parameters are internally passed to the funct
function.

stop.likelihood.change, stop.max.nsteps, trace

the parameters for the EM algorithm. Internally, these parameters are passed to
the funct function.

mean, between, within, cov

four vectors which define the model structures for models to be fitted. For exam-
ple, if mean="E", only models with constrained means are considered (means of
Gaussian components are forced to be equal). On the other hand if mean=c("E",
"D"), both models with constrained means and models without constraint on the
means are fitted.

funct a function which fits a variant of Gaussian mixture model, one of the: belief,
soft, semisupervised or unsupervised functions.
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... arguments that are passed to function funct.
all.possible.permutations

If equal TRUE, all possible initial parameters’ permutations of components are
considered. Since there is kList! permutations, model fitting is repeated kList!
times. As a result only the model with the highest likelihood is returned.

Details

Arguments kList, as well as mean, between, within, and cov define the list of models to be fitted.
All combinations of specified model sizes and model structures are considered. List of fitted models
is returned as a result.

The argument funct defines which variant of Gaussian mixture models should be used for model fit-
ting. One can use the wrappers beliefList(), softList(), semisupervisedList(), unsupervisedList()
which call the mModelList() function and have a prespecified argument funct.

Value

An object of the class mModelList, with the following slots:

models a list of models, each of the class mModel

loglikelihoods a vector with log likelihoods of the models from list models

names a vector with names of the models from list models

params a vector with the number of parameters of models from list models

kList equals the input argument kList

Author(s)

Przemyslaw Biecek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

See Also

mModel, getModelStructure

Examples

simulated = simulateData(d=2, k=3, n=100, m=60, cov="0", within="E", n.labels=2)

models1=mModelList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
kList=3:4, mean=c("D","E"), between="D", within="D",
cov="0", funct=belief)

plot(models1)
plotGIC(models1, penalty="BIC")
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## Do not run
## It could take more than one minute
# simulated = simulateData(d=2, k=3, n=300, m=60, cov="0", within="E", n.labels=2)
#
# models1=mModelList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
# kList=3, mean=c("D","E"), between=c("D","E"), within=c("D","E"),
# cov=c("D","0"), funct=belief)
# plot(models1)
# plotGIC(models1, penalty="BIC")
#
# models2 = beliefList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
# kList=2:7, mean="D", between="D", within="E", cov="0")
# plot(models2)
# plotGIC(models2, penalty="BIC")
#
# models3 = beliefList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
# kList=2:7, mean="D")
# plotGIC(models3, penalty="BIC")

plot.mModel Plotting a Graphical Visualization of a Gaussian Model or a List of
Models

Description

The generic function plot is used to visualize the data set and Gaussian model components fitted
to this data. On the resulting plot the observations without labels are presented with black points,
whereas the labeled observations are marked by different colors and different symbols. The fitted
Gaussian components are represented by ellipses into the two-dimensional case and by densities
in the one dimensional case. If data has more than two dimensions thus graphs are presented on
the subspace generated by first two PCA components. Note that the estimation is done in higher
dimension and the reduction to 2D is done only for illustration. That gives different results than
data reduction prior to modeling process.

Usage

## S3 method for class 'mModel'
plot(x, ...)

Arguments

x an object of the class mModel.

... graphical arguments that are passed to the underlying plot() function.

Details

For one dimensional data the width of the density corresponds to standard deviation of the fitted
Gaussian component. Fitted means are marked by vertical dashed lines.
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For two dimensional data ellipses represents covariances for the corresponding model components.

For more dimensional points and ellipses are projected into 2D subspace spanned by first two PCA
components.

Author(s)

Przemyslaw Biecek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

Examples

data(genotypes)
modelSupervised = supervised(knowns=genotypes$knowns, class=genotypes$labels)
plot(modelSupervised)

# semi-supervised modeling
modelSemiSupervised = semisupervised(X=genotypes$X, knowns=genotypes$knowns,

class = genotypes$labels)
plot(modelSemiSupervised)

# belief-based modeling
modelBelief = belief(X=genotypes$X, knowns=genotypes$knowns, B=genotypes$B)
plot(modelBelief)

# soft-label modeling
modelSoft = soft(X=genotypes$X, knowns=genotypes$knowns, P=genotypes$B)
plot(modelSoft)

# unsupervised modeling
modelUnSupervised = unsupervised(X=genotypes$X, k=3)
plot(modelUnSupervised)

plot.mModelList Plotting a graphical visualization of a model or a list of models

Description

The function plot.mModelList() creates a grid of panels and then plots a set of input fitted models
in the consecutive panels. The plot.mModel() function is used to plot each single model.

Usage

## S3 method for class 'mModelList'
plot(x, ...)
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Arguments

x an object of the class mModelList.

... graphical arguments that are passed to underlying plot() function.

Details

The argument x is a list of models. If these models differ both by component numbers and by the
model structures, in the resulting grid of panels columns correspond to the different model structures
while rows correspond to the different component numbers.

If considered models differ only by component numbers or only by the model structures, the grid
of panels is as close to square as possible and consecutive panels contain consecutive models from
the list of models x.

Author(s)

Przemyslaw Biecek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

See Also

plot.mModel

Examples

simulated = simulateData(d=2, k=3, n=100, m=60, cov="0", within="E", n.labels=2)
models1=mModelList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,

kList=3:4, mean=c("D","E"), between="D", within="D",
cov="0", funct=belief)

plot(models1)

## Do not run
## It could take more than one minute
# simulated = simulateData(d=2, k=3, n=300, m=60, cov="0", within="E", n.labels=2)
#
# models1=mModelList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
# kList=3, mean=c("D","E"), between=c("D","E"), within=c("D","E"),
# cov=c("D","0"), funct=belief)
# plot(models1)
#
# models2 = beliefList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
# kList=2:7, mean="D", between="D", within="E", cov="0")
# plot(models2)
#
# models3 = beliefList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
# kList=2:7, mean="D")
# plot(models3)
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plotGIC Plotting GIC scores

Description

The function plotGIC() plots the GIC scores for an input collection of models. The function
getGIC() extracts GIC for given model and penalty function. The function getDF() extracts the
number of degree of freedom for model parameters.

Usage

plotGIC(models, penalty = 2, plot.it = TRUE, ...)

getGIC(model, p = 2, whichobs="unlabeled")

getDF(model)

Arguments

models an object of the class mModelList or a matrix of GIC scores.
model an object of the class mModel.
penalty a penalty for the GIC criteria. This parameter can be a single number or a string,

on of the "BIC", "AIC", "AIC3", "AIC4", "AICc", "AICu", "CAIC", "BIC",
"MDL", "CLC", "ICL-BIC", "AWE".

p same as penalty,
whichobs one of "unlabeled", "labeled", "all". This parameter specify which observations

should be used in the likelihood and gic score calculation,
plot.it a logical value, if TRUE then the chart with the GIC scores will be plotted.
... other arguments that will be passed to the getGIC function.

Details

The function plotGIC() calculates the GIC scores for each model from the models list and, given
plot.it=TRUE, plots a dotchart with the calculated GIC scores.

As a result the function plotGIC() returns a matrix with the calculated GIC scores. This matrix or
its submatrix can be used in next call of the plotGIC() function as models argument. The columns
of the matrix correspond to different component numbers of the models, while the rows correspond
to their structures. The structures are coded with four-letter strings. The letters refer, in order from
left to right: first, the relation between the means’ vectors of the components, which can either
be equal (letter "E") or unconstrained ("D"). Second, the relation between covariance matrices,
which can all either be equal ("E"), or unconstrained ("D"). Third, the relation between the data
vector components (corresponding to data dimensions) within each covariance matrix, i.e. each
covariance matrix can either have all variances equal to some constant and all covariances equal
to some constant ("E") or can be unconstrained ("D"). Fourth, the covariances in each covariance
matrix, which can either all be forced to equal 0 ("0") or be unconstrained ("D").

The best model, i.e. model with the smallest GIC score is marked with a star on the plotted chart.
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Value

The matrix with GIC scores calculated for the list of models specified by the models argument.

Author(s)

Przemyslaw Biecek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

Examples

simulated = simulateData(d=2, k=3, n=100, m=60, cov="0", within="E", n.labels=2)
models1 = mModelList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,

kList=3:4, mean=c("D","E"), between="D", within="D",
cov="0", funct=belief)

plotGIC(models1, penalty="BIC")

## Do not run
## It could take more than one minute
# simulated = simulateData(d=2, k=3, n=300, m=60, cov="0", within="E", n.labels=2)
#
# models1=mModelList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
# kList=3, mean=c("D","E"), between=c("D","E"), within=c("D","E"),
# cov=c("D","0"), funct=belief)
# plotGIC(models1, penalty="BIC")
#
# models2 = beliefList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
# kList=2:7, mean="D", between="D", within="E", cov="0")
# plotGIC(models2, penalty="BIC")
#
# models3 = beliefList(X=simulated$X, knowns=simulated$knowns, B=simulated$B,
# kList=2:7, mean="D")
# plotGIC(models3, penalty="BIC")

predict.mModel Predictions for fitted Gaussian component model

Description

For every row in the matrix X the posterior probability of belonging to class i is calculated.

Usage

## S3 method for class 'mModel'
predict(object, X, knowns = NULL, B = NULL, P = NULL, ...)
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Arguments

object an object of the class mModel,

X a matrix or data.frame in which number of columns is equal to object$d.

knowns a data.frame or matrix with the labeled observations. If the argument knowns
is specified then eighter B or P need to be specified.

P a matrix with plausibilities for object knowns.

B a matrix with beliefs for object knowns.

... all other arguments will be neglected.

Details

The matrix tij of posterior probabilities is calculated as normalized products of priors pi’s and
density of model components in values specified by rows of the matrix X.

If arguments knowns and B are specified then the priors’s for objects in knowns are replaced by
belief matrix B. If arguments knowns and P are specified then the priors’s for objects in knowns are
multiplied by plausibility matrix P.

Value

An list with the following elements:

tij.X, tij.knowns

the matrix tij.X is a matrix with number of rows equal to number of rows in
the matrix X and the number of columns equal to the number of components in
model defined by argument object. Values in this matrix are posterior proba-
bilities that observation i belongs to component j. The slot tij.knowns is equal
to NULL if neither B nor P are specified, otherwise it is a matrix with number
of rows equal to number of rows in the matrix knowns and contains posterior
probabilities for observarions with specified belief or plausibilities matrix

class.X, class.knowns

vactors of labels/classes obtained with the MAP rule. The vector class.X cor-
responds to observations in X while the vector class.knowns corresponds to
observations in knowns.

Author(s)

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

References

http://bgmm.molgen.mpg.de

See Also

belief
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Examples

data(genotypes)

modelSoft = soft(X=genotypes$X, knowns=genotypes$knowns, P=genotypes$B)

preds = predict(modelSoft, X = genotypes$X)
str(preds)

simulateData Dataset generation

Description

The function simulateData generates an artificial dataset from a mixture of Gaussian components
with a given set of parameters.

Usage

simulateData(d = 2, k = 4, n = 100, m = 10, mu = NULL, cvar = NULL,
s.pi = rep(1/k, k), b.min = 0.02, mean = "D", between = "D",
within = "D", cov = "D", n.labels = k)

Arguments

d the dimension of the data set,

k the number of the model components,

n the total number of observations, both labeled and unlabeled,

mu a matrix with k rows and d columns, which defines the means’ vectors for the
corresponding model components. If not specified, by default its values are
generated from a normal distribution N(0,49),

cvar a three-dimensional array with the dimensions (k, d, d). If not specified, each
covariance matrix is generated in three steps: first, 2*d samples from a d-
dimensional normal distribution N(0, Id) are generated. Next, a covariance ma-
trix d x d for these samples is calculated. Finally, the resulting sample covariance
matrix is scaled by a factor generated from an exponential distribution Exp(1),

s.pi a vector of k probabilities, i.e. the mixing proportions of the model. The mixing
proportions specify a multinomial distribution over the components, from which
the numbers of observations in each cluster are generated. By default a uniform
distribution is used.

mean, between, within, cov

constraints on the model structure. By default all are equal to "D". If other
values are set, the parameters mu and cvar are adjusted to match the specified
constraints,

m the number of the observations, for which the beliefs are to be calculated,
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b.min the belief that an observation does not belong to a component. Formally, the
belief bij for the observation i to belong to component j is equal b.min if i
is not generated from component j. Thus, the belief that i belongs to its true
component is set to 1-b.min*(n.labels-1), and b.min is constrained that
b.min$<1/$n.labels. By default b.min=0.02,

n.labels the number of components used as labels, defining the number of columns in the
resulting beliefs matrix. By default n.labels equals k, but the user can specify
a smaller number. Using this argument the user can define a scenario in which
the data are generated from a mixture of three components, but only two of them
are used as labels in the beliefs matrix (applied in the example below).

Value

An list with the following elements:

X the matrix of size n-m rows and d columns with generated values of unlabeled
observations,

knowns the matrix of size m rows and d columns with generated values of labeled ob-
servations,

B the belief matrix of the size m rows and k columns derived for knowns matrix,

model.params the list of model parameters,

Ytrue indexes of the true Gaussian components from which each observation was gen-
erated. Lables for knowns go first.

Author(s)

Przemyslaw Biecek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

Examples

simulated = simulateData(d=2, k=3, n=300, m=60, cov="0", within="E", n.labels=2)
model = belief(X = simulated$X, knowns = simulated$knowns, B=simulated$B)
plot(model)

simulated = simulateData(d=1, k=2, n=300, m=60, n.labels=2)
model = belief(X = simulated$X, knowns = simulated$knowns, B=simulated$B)
plot(model)
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Ste12 Ste12 knockout data under pheromone treatment versus wild type; Ex-
amples of Ste12 targets; Binding p-values of Ste12 to those targets.

Description

Ste12 knockout expression data (Roberts et al., 2002) and knowledge from a Ste12 binding experi-
ment (Harbison et al., 2004) used for identifying Ste12 target genes under pheromone treatment.

Usage

data(Ste12)

Format

Ste12Data vector: 601 Ste12Beliefs matrix of example certainty: 42 x 2 Ste12Binding vector: 42

Details

Ste12Data Log2 expression ratios of Ste12 knockout versus wild type, both under 50nM alpha-
factor treatment for 30min. This data is for 601 genes that had more than 1.5 fold change in
expression after pheromone treatment versus wild type. Ste12Beliefs: Gives the certainty (be-
lief/plausibility) for each out of 42 example Ste12 targets to belong to their cluster. Ste12Beliefs:
Gives the certainty (belief/plausibility) for each out of 42 example Ste12 targets to belong to their
cluster. The 42 examples were chosen to meet two criteria: (1) Had a binding p-value <0.0001 (see
Ste12Binding), and (2) Had a 2-fold change in response to pheromone treatment (versus wild-type)
Ste12Binding: Gives the binding p-value for each example Ste12 target (see Ste12Belief).

Author(s)

Ewa Szczurek

References

Roberts, C. J., Nelson, B., Marton, M. J., Stoughton, R., Meyer, M. R., Bennett, H. A., He, Y. D.,
Dai, H., Walker, W. L., Hughes, T. R., Tyers, M., Boone, C., and Friend, S. H. (2000). Signaling and
Circuitry of Multiple MAPK Pathways Revealed by a Matrix of Global Gene Expression Profiles.
Science, 287(5454), 873–880.

Harbison, C. T., Gordon, D. B., Lee, T. I., Rinaldi, N. J., Macisaac, K. D., Danford, T. W., Hannett,
N. M., Tagne, J.-B., Reynolds, D. B., Yoo, J., Jennings, E. G., Zeitlinger, J., Pokholok, D. K., Kellis,
M., Rolfe, P. A., Takusagawa, K. T., Lander, E. S., Gifford, D. K., Fraenkel, E., and Young, R. A.
(2004). Transcriptional regulatory code of a eukaryotic genome. Nature, 431(7004), 99–104.

See Also

miRNA,CellCycle
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Examples

data("Ste12")
print(Ste12Data)
print(Ste12Beliefs)
print(Ste12Binding)

Supplementary functions

Set of supplementary functions for bgmm package

Description

Set of supplementary functions for bgmm package.

Usage

## S3 method for class 'numeric'
determinant(x, logarithm = TRUE, ...)

map(B)

loglikelihood.mModel(model, X)

Arguments

x a single number.

X a data.frame with the unlabeled observations, the rows correspond to the obser-
vations and the columns to the dimensions of the data.

B a beliefs matrix with the distribution of beliefs for the labeled observations.

model an object of the class mModel.

logarithm, ... these arguments are ignored.

Author(s)

Przemyslaw Biecek

References

Przemyslaw Biecek, Ewa Szczurek, Martin Vingron, Jerzy Tiuryn (2012), The R Package bgmm:
Mixture Modeling with Uncertain Knowledge, Journal of Statistical Software.

Examples

data(genotypes)

map(genotypes$B)
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