Package ‘astgrepr’

June 8, 2025
Type Package
Title Parse and Manipulate R Code
Version 0.1.1

Description Parsing R code is key to build tools such as linters and stylers.
This package provides a binding to the 'Rust' crate 'ast-grep' so that one
can parse and explore R code.

License MIT + file LICENSE
Encoding UTF-8
Config/rextendr/version 0.4.0.9000
RoxygenNote 7.3.2

Depends R (>=4.2)

Imports checkmate, rrapply, stats, yaml

Suggests knitr, rmarkdown, rstudioapi, spelling, tinytest

URL https://github.com/etiennebacher/astgrepr,

https://astgrepr.etiennebacher.com/

BugReports https://github.com/etiennebacher/astgrepr/issues
SystemRequirements Cargo (Rust's package manager), rustc (>= 1.78.0)
VignetteBuilder knitr

Language en-US

NeedsCompilation yes

Author Etienne Bacher [aut, cre, cph]

Maintainer Etienne Bacher <etienne.bacher@protonmail.com>
Repository CRAN

Date/Publication 2025-06-07 23:30:13 UTC

https://github.com/etiennebacher/astgrepr
https://astgrepr.etiennebacher.com/
https://github.com/etiennebacher/astgrepr/issues

2 ast_rule
Contents
ast_rule . .o L e 2
node-find e 4
node-fix e e e e e 6
node-get-match 7
node-info L e e e e e 9
node-iS e e e 10
NOdE-Tange o i e e e e e e e e 11
node-teXt L e e e e e e e e e e e 12
node-traversal e e 13
NOde_get_TOOt i i e e e e e 15
node_Kind e 16
pattern_rule e e 16
relational_rule L e 17
TEE_NEW .+ o v v v e o e e e e e e e e 18
IEE_TEWTIILE v v o o o e e e e e e e e e e e e 18
rEE_TOOt . . . v v v o o o e e e e e e e e e 20
Index 21
ast_rule Build a rule
Description
Rules are the core of astgrepr. Those are used to search for nodes and are used in node_match* ()
and node_find*() functions. ast_rule() is a very flexible function that allows one to build simple
rules but also much more complex and specific ones.
Usage

ast_rule(

pattern = NULL,
kind = NULL,
regex = NULL,
inside = NULL,
has = NULL,
precedes = NULL,
follows = NULL,
all = NULL,

any = NULL,

not = NULL,
matches = NULL,
id = NULL

ast_rule 3

Arguments

pattern The pattern to look for. This can be a string or an object of class "astgrep_pattern_rule”
created by pattern_rule(). This can contain meta-variables to capture certain
elements. Those meta-variables can then be recovered with node_get_match()
and node_get_multiple_matches(). The meta-variables must start with $ and
have only uppercase letters, e.g. $VAR.

kind The kind of nodes to look for.

regex A regex used to look for nodes. This must follow the syntax of the Rust regex
crate.

inside In which node should the node we look for be positioned? This can be another
rule made with ast_rule() or an object of class "astgrep_relational_rule”
created with relational_rule().

has Same input type as inside, but this looks for nodes that contain another type of
node.

precedes Same input type as inside, but this looks for nodes that precede another type of
node.

follows Same input type as inside, but this looks for node that follow another type of
node.

all This takes one or a list of rules made with ast_rule(). It only matches nodes
that respect all of the rules.

any This takes one or a list of rules made with ast_rule(). It matches nodes that
respect any of the rules.

not This takes one or a list of rules made with ast_rule(). It excludes those nodes
from the selection.

matches This takes the id of another rule. It is useful to reuse rules.

id The name of this rule. This can be reused in another rule with matches.

Value

A list (possibly nested) with the class "astgrep_rule”.

About meta-variables

Meta-variables allow us to capture some of the content in a pattern. Usually, using $ followed by
an id in uppercase letters is enough:

src <- "any(duplicated(x))"

root <- src |>
tree_new() |>
tree_root()

root |>

node_find(ast_rule(pattern = "any(duplicated($A))"))
#> <List of 1 rule>
#> |--rule_1: 1 node

https://docs.rs/regex/latest/regex/
https://docs.rs/regex/latest/regex/

4 node-find

However, in some cases using $ is a problem. For instance, if we want to capture a column name
coming after $, then we can’t use $ both as code and as identifier.

src <- "df$a"

root <- src |>
tree_new() |>
tree_root()

root |>

node_find(ast_rule(pattern = "df$$A"))
#> <List of 1 rule>
#> |--rule_1: @ node

In this situation, we can use p instead:

root |>

node_find(ast_rule(pattern = "df$pA"))
#> <List of 1 rule>
#> |--rule_1: 1 node

Examples

ast_rule(pattern = "print($A)")

ast_rule(
pattern = "print($A)",
inside = ast_rule(
any = ast_rule(

kind = c("for_statement”, "while_statement"”)
)
)
)
node-find Find node(s) matching a pattern
Description

Those functions find one or several nodes based on some rule:

e node_find() returns the first node that is found;
e node_find_all() returns a list of all nodes found.
Some arguments (such as kind) require some knowledge of the tree-sitter grammar of R. This gram-

mar can be found here: https://github.com/r-1lib/tree-sitter-r/blob/main/src/grammar.
json.

https://github.com/r-lib/tree-sitter-r/blob/main/src/grammar.json
https://github.com/r-lib/tree-sitter-r/blob/main/src/grammar.json

node-find

Usage

node_find(x, ..., files = NULL)

node_find_all(x, ..., files = NULL)
Arguments

X A node, either from tree_root () or from another node_x () function.

Any number of rules created with ast_rule().

files A vector of filenames containing rules. Those must be . yaml files.

Value

node_find() returns a single SgNode.

node_find_all() returns a list of SgNodes.

Examples

src <= "x <= rnorm(100, mean = 2)
any(duplicated(y))
plot(mtcars)
any(duplicated(x))"

root <- src |>
tree_new() |>
tree_root()

root |>
node_find(ast_rule(pattern = "any(duplicated($A))"))

root |>
node_find_all(ast_rule(pattern = "any(duplicated($A))"))

using the 'kind' of the nodes to find elements
src <- "

a<-1

while (TRUE) { print('a') }

n

root <- src |>
tree_new() |>
tree_root()

root |>
node_find(ast_rule(kind = "while_statement”))

one can pass several rules at once
src <= "x <= rnorm(100, mean = 2)
any(duplicated(y))
plot(mtcars)

6 node-fix

any(duplicated(x))
while (TRUE) { print('a') }"
root <- src |>
tree_new() |>
tree_root()

root |>
node_find(
ast_rule(pattern = "any(duplicated($A))"),
ast_rule(kind = "while_statement")
)
root |>

node_find_all(
ast_rule(pattern = "any(duplicated($A))"),

ast_rule(kind = "while_statement")
)
node-fix Change the code in the tree
Description

node_replace() gives the replacement for a particular node. node_replace_all() does the same
but for several nodes (e.g. the output of node_find_all()). The output of those functions can be
passed to tree_rewrite() to rewrite the entire input code with those replacements.

Usage
node_replace(x, ...)
node_replace_all(x, ...)
Arguments
X A node, either from tree_root () or from another node_x() function.
Named elements where the name is a rule ID and the value is a character string
indicating the replacement to apply to nodes that match this rule. Meta-variables
are accepted but the syntax is different: they must be wrapped in ~~, e.g "anyNA(~~VAR~~)".
Value

A list where each element is the replacement for a piece of the code. Each element is a list containing
3 sub-elements:

* the start position for the replacement

* the end position for the replacement

* the text used as replacement

node-get-match 7

Examples

”

src <-
x <- c(1, 2, 3)
any(duplicated(x), na.rm = TRUE)
any(duplicated(x))
if (any(is.na(x))) {

TRUE
3
any(is.na(y))"

root <- tree_new(src) |>
tree_root()

Only replace the first nodes found by each rule

nodes_to_replace <- root |>
node_find(
ast_rule(id = "any_na", pattern = "any(is.na($VAR))"),
ast_rule(id = "any_dup”, pattern = "any(duplicated($VAR))")
)

nodes_to_replace |>
node_replace(
any_na = "anyNA(~~VAR~~)",
any_dup = "anyDuplicated(~~VAR~~) > 0"
)

Replace all nodes found by each rule

nodes_to_replace <- root |>
node_find(
ast_rule(id = "any_na", pattern = "any(is.na($VAR))"),
ast_rule(id = "any_dup”, pattern = "any(duplicated($VAR))")
)

nodes_to_replace |>
node_replace(
any_na = "anyNA(~~VAR~~)",
any_dup = "anyDuplicated(~~VAR~~) > Q"
)

node-get-match Get the match(es) from a meta-variable

Description
Those functions extract the content of the meta-variable specified in node_find():

* node_get_match() is used when the meta-variable refers to a single pattern, e.g. "plot($A);

8 node-get-match

* node_get_multiple_matches() is used when the meta-variable captures all elements in a
pattern, e.g. "plot($$$A)".

Usage

node_get_match(x, meta_var)

node_get_multiple_matches(x, meta_var)

Arguments
X A node, either from tree_root () or from another node_x() function.
meta_var The name given to one of the meta-variable(s) in node_find().

Value

node_get_match() returns a list of depth 1, where each element is the node corresponding to the
rule passed (this can be of length O if no node is matched). node_get_multiple_matches()
also returns a list of depth 1, but each element can contain multiple nodes when the meta-variable
captures all elements in a pattern.

Examples

src <= "x <= rnorm(100, mean = 2)
plot(mtcars)”

root <- src |>
tree_new() |>
tree_root()

we capture a single element with "$A" so node_get_match() can be used
root |>

node_find(ast_rule(pattern = "plot($A)")) |>

node_get_match("A")

we can specify the variable to extract

root |>
node_find(ast_rule(pattern = "rnorm($A, $B)")) |>
node_get_match("B")

we capture many elements with "$$$A"” so node_get_multiple_matches() can
be used here
root |>
node_find(ast_rule(pattern = "rnorm($$$A)")) |>
node_get_multiple_matches("A")

node-info

node-info Get more precise information on a node

Description

Get more precise information on a node

Usage

node_matches(x, ..., files = NULL)

node_inside(x, ..., files = NULL)

node_has(x, ..., files = NULL)

node_precedes(x, ..., files = NULL)

node_follows(x, ..., files = NULL)
Arguments

X A node, either from tree_root () or from another node_x () function.

Any number of rules created with ast_rule().

files A vector of filenames containing rules. Those must be . yaml files.

Value

A list containing as many elements as there are nodes as input.

Examples

"

src <-

print('hi'")

fn <- function() {
print('hello")

3

"

root <- src |>
tree_new() |>
tree_root()

some_node <- root |>
node_find(ast_rule(pattern = "print($A)"))

node_text (some_node)

Check if a node matches a specific rule
some_node |>

10 node-is

node_get_match("A") |>
node_matches(ast_rule(kind = "argument"”))

Check if a node is inside another one
some_node |>
node_get_match("A") |>

node_inside(ast_rule(kind = "call"))
node-is Get information on nodes
Description

Get information on whether a node is a leaf (meaning that it doesn’t have any children) and whether
it is named.

Usage

node_is_leaf(x)
node_is_named(x)

node_is_named_leaf (x)

Arguments

X A node, either from tree_root () or from another node_x () function.

Value

A logical value.

Examples

src <- "x <= rnorm(100, mean = 2)
any(duplicated(y))
X <-z+1
any(duplicated(x))"

root <- src |>
tree_new() |>
tree_root()

node_is_leaf (root)
root |>

node_find(ast_rule(pattern = "z")) |>
node_is_leaf ()

node-range 11

root |>
node_find(ast_rule(pattern = "z")) |>
node_is_named()

node-range Get the start and end positions of a node

Description

Get the start and end positions of a node

Usage

node_range(x)
node_range_all(x)

Arguments

X A node, either from tree_root () or from another node_x() function.

Value

A list of two elements: start and end. Each of those is a vector with two values indicating the row
and column. Those are 0-indexed.

Examples

src <- "x <- rnorm(100, mean = 2)
any(duplicated(y))
plot(x)
any(duplicated(x))"

root <- src |>
tree_new() |>
tree_root()

node_range(root)

root |>
node_find(ast_rule(pattern = "rnorm($$$A)")) |>
node_range()
There is also an '
root |>
node_find_all(
ast_rule(pattern = "any(duplicated($A))"),
ast_rule(pattern = "plot($A)")
) 1>
node_range_all()

'_all” variant when there are several nodes per rule

12 node-text

node-text Extract the code corresponding to one or several nodes

Description
Those functions extract the code corresponding to the node(s):

* node_text() applies on a single node, for example the output of node_get_match()

* node_text_all() applies on a list of nodes, for example the output of node_get_multiple_matches()

Usage

node_text(x)

node_text_all(x)

Arguments

X A node, either from tree_root () or from another node_x() function.

Value

A list with as many elements as there are in the input. Each element is a list itself with the text
corresponding to the input.

Examples

src <- "x <= rnorm(100, mean = 2)
any(duplicated(y))
plot(mtcars)
any(duplicated(x))"

root <- src |>
tree_new() |>
tree_root()

node_text() must be applied on single nodes
root |>
node_find(ast_rule(pattern = "plot($A)")) |>
node_text()

node_find_all() returns a list on nodes on which

we can use node_text_all()

root |>
node_find_all(ast_rule(pattern = "any(duplicated($A))")) |>
node_text_all()

node-traversal 13

node-traversal Navigate the tree

Description

This is a collection of functions used to navigate the tree. Some of them have a variant that applies
on a single node (e.g. node_next()) and one that applies on a list of nodes (e.g. node_next_all()):

* node_prev(), node_prev_all(), node_next(), and node_next_all() get the previous and
next node(s) that are at the same depth as the current node;

* node_parent(), node_ancestors(), node_child() and node_children() get the node(s)
that are above or below the current node in terms of depth. All nodes except the root node
have at least one node (the root).

Usage
node_parent (x)
node_child(x, nth)
node_ancestors(x)
node_children(x)
node_next(x)
node_next_all(x)
node_prev(x)

node_prev_all(x)

Arguments
X A node, either from tree_root () or from another node_x () function.
nth Integer. The child node to find. This is O-indexed, so setting nth = @ gets the
first child.
Value
A node
Examples

##H get the previous/next node ----------------------————-

n

src <-

14

print('hi there')

a<-1

fn <- function(x) {
X + 1

3

n

root <- src |>
tree_new() |>
tree_root()

root |>
node_find(ast_rule(pattern
node_prev() |>
node_text()

root |>
node_find(ast_rule(pattern
node_next() |>
node_text()

there are nodes inside the

same level as "fn"

root |>
node_find(ast_rule(pattern
node_next_all() [>
node_text_all()

get the parent/child node

src <- "

print('hi there')

a<-1

fn <= function(x) {
X + 1

n

root <- src |>
tree_new() |>
tree_root()

root |>
node_find(ast_rule(pattern
node_parent() |>
node_text()

root |>
node_find(ast_rule(pattern
node_ancestors() |>
node_text_all()

root |>
node_find(ast_rule(pattern

= "a <= $AM)) |>

= "a <= $AM) |>

function, but there are no more nodes on the

= "a <= $A™)) |>

= "$VAR + 1)) |>

= "$VAR + 1)) |>

= "$VAR + 1)) |>

node-traversal

node_get_root

node_child(@) |[>
node_text()

root |>
node_find(ast_rule(pattern = "$VAR + 1")) |>
node_children() |>
node_text_all()

15

node_get_root Recover the tree root from a node

Description

Recover the tree root from a node

Usage

node_get_root(x)

Arguments

X A node, either from tree_root () or from another node_x() function.

Value

A list of two elements: start and end. Each of those is a vector with two values indicating the row

and column. Those are 0-indexed.

Examples

n

src <-

print('hi")

fn <- function() {
print('hello")

}

n

root <- src |>
tree_new() |>
tree_root()

root |>
node_find(ast_rule(pattern = "print($A)")) |>
node_get_root() |>
tree_root() |>
node_text()

16 pattern_rule

node_kind Find the kind of a node

Description

Find the kind of a node

Usage
node_kind(x)

Arguments

X A node, either from tree_root () or from another node_x () function.

Value

A list with as many elements as in the input. Each element is a character value.

Examples

src <- "x <- rnorm(100, mean = 2)
any(duplicated(y))
X <-z +1
any(duplicated(x))"

root <- src |>
tree_new() |>
tree_root()

root |>
node_find(ast_rule(pattern = "any(duplicated($VAR))")) [>
node_kind()

root |>
node_find(ast_rule(pattern = "$X + $VALUE")) |>
node_kind()

pattern_rule Build a pattern rule

Description

This is a specific type of rule. It can be used in the more general ruleset built with ast_rule().

Usage

pattern_rule(selector = NULL, context = NULL, strictness = "smart")

relational rule 17

Arguments
selector Defines the surrounding code that helps to resolve any ambiguity in the syntax.
context Defines the sub-syntax node kind that is the actual matcher of the pattern.
strictness Optional, defines how strictly pattern will match against nodes. See ’Details’.
Details

The strictness parameter defines the type of nodes the ast-grep matcher should consider. It has
the following values:
* cst: All nodes in the pattern and target code must be matched. No node is skipped.

e smart: All nodes in the pattern must be matched, but it will skip unnamed nodes in target
code. This is the default behavior.

* ast: Only named AST nodes in both pattern and target code are matched. All unnamed nodes
are skipped.

* relaxed: Named AST nodes in both pattern and target code are matched. Comments and
unnamed nodes are ignored.

e signature: Only named AST nodes’ kinds are matched. Comments, unnamed nodes and text
are ignored.

More information: https://ast-grep.github.io/guide/rule-config/atomic-rule.html#pattern-object

Value

An list of class astgrep_pattern_rule

relational_rule Build a relational rule

Description

Build a relational rule

Usage
relational_rule(stopBy = "neighbor"”, field = NULL, regex = NULL)

Arguments
stopBy todo
field todo
regex todo
Value

An list of class astgrep_relational_rule

https://ast-grep.github.io/guide/rule-config/atomic-rule.html#pattern-object

18 tree_rewrite

tree_new Create a syntax tree

Description

This function takes R code as string and creates the corresponding abstract syntax tree (AST) from
which we can query nodes.

Usage
tree_new(txt, file, ignore_tags = "ast-grep-ignore")
Arguments
txt A character string of length 1 containing the code to parse. If provided, file
must not be provided.
file Path to file containing the code to parse. If provided, txt must not be provided.
ignore_tags Character vector indicating the tags to ignore. Default is "ast-grep-ignore”,
meaning that any line that follows # ast-grep-ignore will be ignored in the
output of node_* () functions.
Value

An abstract syntax tree containing nodes

Examples

src <= "x <- rnorm(100, mean = 2)
any(duplicated(y))
plot(x)
any(duplicated(x))"”

tree_new(src)

tree_rewrite Rewrite the tree with a list of replacements

Description

Rewrite the tree with a list of replacements

Usage

tree_rewrite(root, replacements)

tree_rewrite 19

Arguments

root The root tree, obtained via tree_root()

replacements A list of replacements, obtained via node_replace() or node_replace_all().

Value

A string character corresponding to the code used to build the tree root but with replacements
applied.

Examples

src <- "x <- c(1, 2, 3)
any(duplicated(x), na.rm = TRUE)
any(duplicated(x))
if (any(is.na(x))) {

TRUE
3
any(is.na(y))"

root <- tree_new(src) |>
tree_root()

Only replace the first nodes found by each rule

nodes_to_replace <- root |>
node_find(
ast_rule(id = "any_na", pattern = "any(is.na($VAR))"),
ast_rule(id = "any_dup”, pattern = "any(duplicated($VAR))")
)

fixes <- nodes_to_replace |>
node_replace(
any_na = "anyNA(~~VAR~~)",
any_dup = "anyDuplicated(~~VAR~~) > Q"
)

original code
cat(src)

new code
tree_rewrite(root, fixes)

Replace all nodes found by each rule

nodes_to_replace <- root |>
node_find_all(
ast_rule(id = "any_na", pattern = "any(is.na($VAR))"),
ast_rule(id = "any_dup"”, pattern = "any(duplicated($VAR))")
)

20 tree_root

fixes <- nodes_to_replace |>
node_replace_all(
any_na = "anyNA(~~VAR~~)",
any_dup = "anyDuplicated(~~VAR~~) > Q"
)

original code
cat(src)

new code
tree_rewrite(root, fixes)

tree_root Get the root of the syntax tree

Description
This function takes a tree created by tree_new() and returns the root node containing all subsequent
nodes.

Usage

tree_root(x)

Arguments

X A tree created by tree_new().

Value

A node corresponding to the root of the abstract syntax tree

Examples

src <- "x <= rnorm(100, mean = 2)
any(duplicated(y))
plot(x)
any(duplicated(x))"”

tree <- tree_new(src)
tree_root(tree)

Index

ast_rule, 2

node-find, 4

node-fix, 6

node-get-match, 7

node-info, 9

node-is, 10

node-range, 11

node-text, 12

node-traversal, 13

node_ancestors (node-traversal), 13

node_child (node-traversal), 13

node_children (node-traversal), 13

node_find (node-find), 4

node_find(), 7

node_find_all (node-find), 4

node_follows (node-info), 9

node_get_match (node-get-match), 7

node_get_match(), 3, 12

node_get_multiple_matches
(node-get-match), 7

node_get_multiple_matches(), 3, 12

node_get_root, 15

node_has (node-info), 9

node_inside (node-info), 9

node_is_leaf (node-is), 10

node_is_named (node-is), 10

node_is_named_leaf (node-is), 10

node_kind, 16

node_matches (node-info), 9

node_next (node-traversal), 13

node_next_all (node-traversal), 13

node_parent (node-traversal), 13

node_precedes (node-info), 9

node_prev (node-traversal), 13

node_prev_all (node-traversal), 13

node_range (node-range), 11

node_range_all (node-range), 11

node_replace (node-fix), 6

node_replace_all (node-fix), 6

21

node_text (node-text), 12
node_text_all (node-text), 12

pattern_rule, 16
relational_rule, 17

tree_new, 18

tree_new(), 20
tree_rewrite, 18
tree_root, 20
tree_root(), 5, 6,813, 15, 16

	ast_rule
	node-find
	node-fix
	node-get-match
	node-info
	node-is
	node-range
	node-text
	node-traversal
	node_get_root
	node_kind
	pattern_rule
	relational_rule
	tree_new
	tree_rewrite
	tree_root
	Index

