Package ‘asnipe’

September 15, 2023
Type Package

Title Animal Social Network Inference and Permutations for Ecologists
Version 1.1.17

Date 2023-09-15

Author Damien R. Farine <dfarine@ab.mpg.de>

Maintainer Damien R. Farine <dfarine@ab.mpg.de>

Description Implements several tools that are used in animal social network analysis, as de-
scribed in Whitehead (2007) Analyzing Animal Soci-
eties <University of Chicago Press> and Farine & Whitehead (2015) <doi:10.1111/1365-
2656.12418>. In particular, this package provides the tools to infer groups and generate net-
works from observation data, perform permutation tests on the data, calculate lagged associa-
tion rates, and performed multiple regression analysis on social network data.

License GPL-2

Encoding UTF-8

Depends R (>=2.10)

Imports MASS, Matrix

Suggests ape, raster, sna
NeedsCompilation no

Repository CRAN

Date/Publication 2023-09-15 06:30:02 UTC

R topics documented:

asnipe-package L e
bl . e
get_associations_pointS_twWo e e e e e
get_group_by_individual oL oL
get_network L e e
get_sampling_periods
SMIMEVENTIS e e e e e e e e e e e
identified_individuals e

https://doi.org/10.1111/1365-2656.12418
https://doi.org/10.1111/1365-2656.12418

2 gbi
INds . . . e e 14
LAR . . . e 15
LRA . . e 16
mrgap.custom.null . ..o oL Lo 18
mrqap.dsp e 19
network_permutation e e e e e e e 21
NEIWOTK_SWaP o ot e e e e e e 25
printmrgap.dsp e e 28
1610 T 29
Index 30
asnipe-package Animal Social Network inference and Permutation: asnipe
Description
Provides functions for infering associations, building social networks, performing permutations,
and regression testing
Details
Package: asnipe
Type: Package
Version: 1.1.17
Date: 2023-09-15
License: GPL-2
Author(s)
Written by Damien R. Farine
Maintainer: Damien R. Farine <dfarine @ab.mpg.de>
gbi Detections of Individuals Forming Flocks at Bird Feeders
Description

Dataset consisting of 151 individuals of 5 passerine species in Wytham Woods, UK: 78 blue tits
(Cyanistes caeruleus), 7 coal tits (Periparus ater), 51 great tits (Parus major), 11 marsh tits (Poecile
palustris), 3 nuthatches (Sitta europaea) and 1 individual of unknown species. Individuals were all
fitted with individually-encoded passive integrated transponder (PIT) tags that were logged by radio

get_associations_points_tw 3

frequency identification (RFID) antennae fitted to each hole on regular sunflower feeders (we used
unhusked sunflower seed). Data were collected from 4 feeders spaced approximately 300m over
the course of one day. Feeders logged the presence of individuals at a sub-second resolution, and
detections were assigned to flocks using a machine learning algorithm (a Gaussian Mixture Model).

Usage

data("group_by_individual”)

Format
Data are formatted in a group by individual matrix. Each row represents one flock, each column
represents one individual.

Source

Farine, D.R., Garroway, C.J., Sheldon, B.C. (2012) Social Network Analysis of mixed-species
flocks: exploring the structure and evolution of interspecific social behaviour. Animal Behaviour
84: 1271-1277.

Examples

data("group_by_individual™)
str(ghi) # see the structure of the data

get_associations_points_tw

Calculate Group Membership using Time Window (please read warn-
ings before using this method)

Description

A time window approach to calculate group co-memberships.

Usage

get_associations_points_tw(point_data, time_window = 180, which_days = NULL,
which_locations = NULL)

Arguments
point_data dataframe of four columns: Date Time ID Location. This requirement is strict
(see details).
time_window window around each individual for calculating associations
which_days subset of Date to include

which_locations
subset of Locations to include

4 get_group_by_individual

Details

Calculates an ego-centric approach to group membership (see warning). For each detection, a group
is created with and all associates within the time window at the same location are included.

Input data must be of the following form: Date is an integer for day (usually starting at 1 on the first
day). Time are the number of seconds elapsed from the start (continuous across all dates). ID is a
unique character string for each individual. Location is a unique character string for each location.

Value

Returns a list with three objects: 1. group by individual matrix (K rows by N columns) 2. an vector
of times for each group 3. a vector of dates for each group 4. a vector of locations for each group

Warning

This method biases associations of dyads occuring in large groups because it creates one row in the
association matrix for each detection of an individual. For this reason, this function should not be
used (see also Psorakis et al. 2015 Behavioural Ecology & Sociobiology). One way to circumvent
this is by including only groups centered around the focal individual when calculating associations.
However, none of the functions in this package are implement this way.

Author(s)

Damien R. Farine

Examples

data("identified_individuals")

calculate group_by_individual for first day at one location
group_by_individual <- get_associations_points_tw(identified_individuals, time_window=180,
which_days=1,which_locations="1B")

split the resulting list

times <- group_by_individual[[2]]

dates <- group_by_individual[[3]]

locations <- group_by_individual[[4]]
group_by_individual <- group_by_individual[[1]]

get_group_by_individual
Convert group or individual data into a group by individual matrix

Description

Converts several different types of data storage into a group by individual matrix for calculating or
permuting networks

get_group_by_individual 5

Usage

get_group_by_individual (association_data, identities = NULL,
location = NULL, data_format = c("groups”, "individuals"))

Arguments

association_data
Can be either a group by individual matrix or a list containing group members
in each element

identities Optional identities for each individual in the dataset
location Returns these spatial locations for each group
data_format Format of the input data

Details

This function will calculate an K x N matrix representing K groups and N individuals. If locations are
included, these will be returned in the row names.

Value

Returns a K x N matrix, where each K row is an group defined from the input data. Column names
of the matrix are given the identity where available. The K row names are given either the time or
time_location for each group.

Author(s)

Damien R. Farine

Examples

define group memberships (these would be read from a file)
individuals <- data.frame(ID=c("C695905","H300253","H300253",
"H300283","H839876","F464557","H300296" , "H300253",

"F464557" , "H300296", "C695905" , "H300283" , "H839876"),
GROUP=c(1,1,2,2,2,3,3,4,5,5,6,6,6))

create a time column
individuals <- cbind(individuals,
DAY=c(1,1,1,1,1,2,2,2,3,3,3,3,3))

ghi <- get_group_by_individual(individuals,
data_format="individuals")

define group memberships (these would be read from a file)
groups <- list(G1=c("C695905","H300253"),

G2=c("H300253", "H300283", "H839876") ,
G3=c("F464557","H300296"),

G4=c("H300253"),

G5=c("F464557","H300296"),

G6=c("C695905", "H300283","H839876"))

6 get_network

create a time variable
days <- ¢(1,1,2,2,3,3)

ghi <- get_group_by_individual(groups,
data_format="groups")

get_network Calculating Weighted Network

Description

Calculate a network from a group by individual matrix. This function allows various levels of

subsetting.

Usage
get_network(association_data, data_format = "GBI",
association_index = "SRI", identities = NULL,

which_identities = NULL, times = NULL, occurrences = NULL,
locations = NULL, which_locations = NULL, start_time = NULL,
end_time = NULL, classes = NULL, which_classes = NULL,
enter_time = NULL, exit_time = NULL)

Arguments

association_data
a K x N matrix of K groups (observations, gathering events, etc.) and N individ-
uals (all individuals that are present in at least one group) OR a K x N x N array
of sampling periods.

data_format "GBI" expect a group by individual matrix, "SP" Expect a sampling periods
array

association_index
"SRI"” Simple ratio index, "HWI"” Half-weight index (more to come)

identities N vector of identifiers for each individual (column) in the group by individual
matrix

which_identities
vector of identities to include in the network (subset of identities)

times K vector of times defining the middle of each group/event

occurrences N x S matrix with the occurrence of each individual in each sampling period
(see details) containing only Os and 1s
locations K vector of locations defining the location of each group/event
which_locations
vector of locations to include in the network (subset of locations)

get_network 7

start_time element describing the starting time for inclusion in the network (useful for tem-
poral analysis)

end_time element describing the ending time for inclusion in the network (useful for tem-
poral analysis)

classes N vector of types or class of each individual (column) in the group by individual
matrix (for subsetting)

which_classes vector of class(es)/type(s) to include in the network (subset of classes)

enter_time N vector of times when each individual entered the population
exit_time N vector of times when each individual departed the population
Details

Provides the ability to generate networks from one group by individual matrix and subsetting within
the function. This is particularly useful for generating several networks with different characteristics
from the same group by individual matrix (for example networks from a given location or set of
locations, or of a particular sex).

Including occurrence data is recommended when using sampling periods (not required for GBI
data). If an individual is only observed alone in a sampling period, then it will not be included in
the sampling period matrices (as these record only associations or interactions, not presence). Thus,
a matrix containing N (for number of individuals) rows and S (for number of sampling periods) is
required. See the get_sampling_periods function for help generating this matrix.

In some situations it is useful to calculate the network based only on the period in which each dyad
overlapped within the population. In such cases, the entry_time and/or the exit_time variables can
be given. These must given in the same format as the times variable, and all need to be in a format
capable of doing time or date comparisons using > and < operators. The easiest is YYYYMMDD,
whereas MMDDYYYY or DDMMYYYY will not work properly.

Value

N x N matrix of association weights for each dyad.

Author(s)

Damien R. Farine

References

Whitehead (2008) Analyzing Animal Societies

Examples

data("group_by_individual")
data("times")

subset GBI (to reduce run time of the example)
gbi <- gbi[,1:80]

define to 2 x N x N network to hold two association matrices

8 get_sampling_periods

networks <- array(@, c(2, ncol(gbhi), ncol(gbi)))

calculate network for first half of the time
networks[1,,] <- get_network(gbhi, data_format="GBI",
association_index="SRI", times=times, start_time=0,
end_time=max(times)/2)

networks[2,,] <- get_network(gbhi, data_format="GBI",
association_index="SRI", times=times,
start_time=max(times)/2, end_time=max(times))

test if one predicts the other via a mantel test (must be loaded externally)
library(ape)
mantel.test(networks[1,,],networks[2,,])

convert to igraph network and calculate degree of the first network

Not run:

library(igraph)

net <- graph.adjacency(networks[1,,], mode="undirected”, diag=FALSE, weighted=TRUE)
deg_weighted <- graph.strength(net)

detach(package:igraph)

alternatively package SNA can use matrix stacks directly

library(sna)

deg_weighted <- degree(networks,gmode="graph"”, g=c(1,2), ignore.eval=FALSE)
detach(package:sna)

End(Not run)

get_sampling_periods Convert group or individual data into sampling periods

Description

Converts several different types of data storage into sampling periods for calculating or permuting
networks

Usage

get_sampling_periods(association_data, association_times, sampling_period,
identities = NULL, location = NULL, within_locations = FALSE,
data_format = c("gbi"”, "groups”, "individuals"), return="SP")

Arguments

association_data
Can be either a group by individual matrix, a list containing group members in
each element, or a two-column data frame with individual ID in the first column
and group ID in the second column

get_sampling_periods 9

association_times

Because sampling periods are inferred over time, each group must contain some
time data (can be in any format, such as seconds, days, etc.). One time must be
provided for each row of the association data.

sampling_period
The number of time periods over which data are combined (for example 10 days,

3600 seconds)
identities Optional identities for each individual in the dataset
location If spatial disaggregation need to be maintained, samping periods can be calcu-

lated per time per location
within_locations
Flag whether to include location information

data_format Format of the input data

return By default ("SP") returns the sampling periods. Anything else will return the
occurrence data (see get_network function)

Details

This function will calculate an association matrix for each sampling period. If locations are in-
cluded, these will be treated independently.

Value

Returns a K x N x N stack of matrices, where each N x N slice is an association matrix. Row names
and Column names of these slices are given the identity where available. The K slice names are
given either the time or time_location for each sampling period. Alternatively (return != "SP") the
function returns the occurrence of each individual in each sampling period, with individuals as rows
and sampling periods as columns.

Author(s)

Damien R. Farine

Examples

define group memberships (these would be read from a file)
individuals <- data.frame(ID=c("C695905","H300253","H300253",
"H300283","H839876","F464557","H300296" , "H300253",

"F464557" , "H300296", "C695905" , "H300283" , "H839876"),
GROUP=c(1,1,2,2,2,3,3,4,5,5,6,6,6))

create a time column
individuals <- cbind(individuals,
DAY=c(1,1,1,1,1,2,2,2,3,3,3,3,3))

SPs <- get_sampling_periods(individuals[,c(1,2)],
individuals[,3],1,data_format="individuals")

occurs <- get_sampling_periods(individuals[,c(1,2)],
individuals[,3],1,data_format="individuals"”, return="occ")

10 gmmevents

define group memberships (these would be read from a file)
groups <- list(G1=c("C695905","H300253"),
G2=c("H300253","H300283", "H839876"),
G3=c("F464557","H300296"),

G4=c("H300253"),

G5=c("F464557","H300296"),

G6=c("C695905", "H300283", "H839876"))

create a time variable
days <- ¢(1,1,2,2,3,3)

SPs <- get_sampling_periods(groups,
days,1,data_format="groups")

occurs <- get_sampling_periods(groups,
days,1,data_format="groups”, return="occ")

gmmevents Infer gathering events

Description

Infer gathering events (groups or flocks) from a temporal datastream of observations, such as PIT
tag data.

Usage

gmmevents(time, identity, location, global_ids=NULL, verbose=TRUE, splitGroups=TRUE)

Arguments

time The timestamp for the observation. Must be a real number (i.e. not a date or
time format). See details below.

identity The identify of the individual in each observation (can be a number or a string,
e.g. PIT tag code).

location The location of the observation (can be a number or a string).

global_ids A vector of all the IDs in the study, used if consistency needs to be maintained
across datasets.

verbose Whether to print out progress and information.

splitGroups Whether or not to split overlappling groups (see details).

gmmevents 11

Details

The gmmevents function has 3 primary inputs: time, identity, and location:

The time must be a number representing a real valued time stamp. This can be number of seconds
since the start of the day, number of seconds since the start of the study, hour of the day, Julian date,
etc. The time stamps should represent a meaningful scale given the group membership definition -
for example if an edge is the propensity to observe an individual at the same location on the same
day, then time stamps should be the day value. In the example below, the time stamps are in seconds,
because flocks of birds visit feeders over a matter of minutes and the group definition is being in the
same flock (and these occur over seconds to minutes). The input must be numeric whole numbers.

The identity is the unique identifier for each individual. This should be consistent across all of the
data sets. In the example here, PIT tags are given, but in broader analyses, we would convert these
to ring (band) numbers because individuals can have different PIT tag numbers in the course of the
study but never change ring numbers. The function will accept any string or numeric input.

The location is where the observation took place. This should reflect meaningful observation loca-
tions for the study. The function will accept any string or numeric inputs.

If the analysis is being conducted as part of a broader analysis in the same populations, it can be
useful to get the results in a consistent form each time. In that case, the global_ids variable can
be used to maintain consistency each time an analysis is run, regardless of which individuals were
identified in the current input data. That is, the group by individual (gbi) matrix will include a
column for every individual provided in global_ids.

Further notes on usage:

The gmm_events functions requires a few careful considerations. First, the amount of memory used
is the square of the amount of data - so having many observations in a given location can run out of
memory. With 16gb of RAM, generally up to 10,000 observations per location (per day - see next
point) seems to be a safe limit.

The input data provided for each location should take into account any artificial gaps in the ob-
servation stream. For example, if there are gaps in data collection at a given location, then the
location information provided into the gmm_events function should be split into two ’locations’ to
represent each continuous set of observations. For example, in the PIT tag data set provided there
are 8 days of sampling. Providing gmm_events with only the location data from the original data
will cause the gap between days to override any gaps between groups (or flocks) within a given
day. To overcome this, instead of providing the gmm_events function with just the location, it is
important to provide a location by day variable. This variable is then returned in the metadata and
the information extracted out again (using strsplit - see example below).

Finally, I have included a new variable called splitGroups. The original function (in both Matlab
and R) would return the occasional group that overlapped other groups. This occured when a
small group was extracted from the data, and then the remaining observations were formed into a
larger group that spanned the smaller group from the same location. For example, say detections
of individuals are made in the same location at 2,8,10,11,12,14,20 seconds, and the first group
extracted contains 10,11,12 then the remaining data look like an evenly-spread group (2,8,14,20).
Setting splitGroups=TRUE identifies such incidences and would split the data into three groups
(2,8), (10,11,12), and (14,20).

Value

Returns a list containing three items:

12 gmmevents

The first item is the group by individual matrix (gbi), which is a matrix where each row is a gathering
event - or group - and each column is an individual. Cells in the matrix have a value of 1 if the
individual was observed in that gathering event, and O if not.

The second item is a matrix containing three columns: the start time, end time, and location of each
detected event. The number of rows in this events matrix matches the number of rows in the gbi
file, and the rows correspond to one another (thus, row 3 of the gbi has the start and end times, and
location, of row 3 of the events matrix).

The third item has the same structure as the group by individual matrix, but instead of being binary
(0 or 1), it contains the number of observations of each individual in each event.

Author(s)

Ioannis Psorakis (original code)
Julian Evans (R implementation)
Damien R. Farine (current implementation)

References

Psorakis, 1., Roberts, S. J., Rezek, 1., & Sheldon, B. C. (2012). Inferring social network structure
in ecological systems from spatio-temporal data streams. Journal of the Royal Society Interface,
9(76), 3055-3066. doi:10.1098/Rsif.2012.0223

Psorakis, 1., Voelkl, B., Garroway, C. J., Radersma, R., Aplin, L. M., Crates, R. A., Culina, A.,
Farine, D. R., Firth, J.A., Hinde, C.A., Kidd, L.R., Milligan, N.D., Roberts, S.J., Verhelst, B.,
Sheldon, B. C. (2015). Inferring social structure from temporal data. Behavioral Ecology and
Sociobiology, 69(5), 857-866. doi:10.1007/s00265-015-1906-0

Examples

library(asnipe)
data("identified_individuals")

Create unique locations in time
identified_individuals$Loc_date <-
paste(identified_individuals$Location,
identified_individuals$Date,sep="_")

Provide global identity list (including individuals
not found in these data, but that need to be included).
Not including this will generate gbi with only the
individuals provided in the data set (in this case 151
individuals)

global_ids <- levels(identified_individuals$ID)

o o

Generate GMM data

gmm_data <- gmmevents(time=identified_individuals$Time,
identity=identified_individuals$ID,
location=identified_individuals$Loc_date,

identified_individuals 13

global_ids=global_ids)

Extract output

gbi <- gmm_data$gbi

events <- gmm_data$metadata
observations_per_event <- gmm_data$B

Can also subset ghi to only individuals observed
in the dataset to give same answer as if

global_ids had not been provided

gbi <- gbi[,which(colSums(gbi)>0)]

Split up location and date data
tmp <- strsplit(events$Location,”_")
tmp <- do.call("rbind", tmp)
events$lLocation <- tmp[,1]
events$Date <- tmp[,2]

identified_individuals
Raw Observation Data of Individual Birds Feeding at Flocks

Description

Contains the raw observation data, of which the first day was used to form the group by individual
file. IDs correspond to TAG in the "individuals" data (note that some tags are error codes, which
have not been removed, and thus do not occur in the individuals data).

Usage

data("identified_individuals")

Format

Data frame containing 4 columns: Date - The observation day (1 to 8, where days 1-2 are the first
weekend, 3-4 the second weekend, etc..) Time - The time in seconds since the very first observation
ID - The PIT tag code of the individual Location - The location where the detection was made (1B,
1C, 1D, 1E)

Source

Farine, D.R., Garroway, C.J., Sheldon, B.C. (2012) Social Network Analysis of mixed-species
flocks: exploring the structure and evolution of interspecific social behaviour. Animal Behaviour
84: 1271-12717.

14 inds

Examples

data("identified_individuals")
head(identified_individuals)
table(identified_individuals$Location)

inds Data on the Individual Birds Contained in the Group by Individual
data

Description

Information about the PIT tag number, ring number, species, and sex (where available) for each in-
dividual in the group by individual data. Each row represents one column in the group by individual
file, and the order is maintained.

Usage

data("individuals")

Format

Data frame containing: TAG - A 10 character hexadecimal code unique to each individual RING.NUMBER
- A 7 character unique ring (or band) number for each individual SPECIES - Each species, where
BLUTI=blue tit, COATI=coal tit, GRETI=great tit, MARTI=marsh tit, and NUTHA=nuthatch

Source

Farine, D.R., Garroway, C.J., Sheldon, B.C. (2012) Social Network Analysis of mixed-species
flocks: exploring the structure and evolution of interspecific social behaviour. Animal Behaviour
84: 1271-1277.

Examples

data("individuals")
data("group_by_individual”)
colnames(gbi) <- inds$RING.NUMBER

LAR

15

LAR

Mean Lagged Association Rate

Description

Calculate lagged association rate g(tau) from Whitehead (2008)

Usage

LAR(group_by_individual, times, timejump, min_time = NULL, max_time = NULL,
identities = NULL, which_identities = NULL, locations = NULL,

which_locations
which_classes =

Arguments

= NULL, start_time = NULL, end_time = NULL, classes = NULL,
NULL)

group_by_individual

times

timejump
min_time
max_time

identities

a K x N matrix of K groups (observations, gathering events, etc.) and N individ-
uals (all individuals that are present in at least one group)

K vector of times defining the middle of each group/event
step length for tau

minimum/starting value of tau

maximum/ending value of tau

N vector of identifiers for each individual (column) in the group by individual
matrix

which_identities

locations
which_locations

start_time

end_time

classes

which_classes

Details

vector of identities to include in the network (subset of identities)

K vector of locations defining the location of each group/event

vector of locations to include in the network (subset of locations)

element describing the starting time for inclusion in the network (useful for tem-
poral analysis)

element describing the ending time for inclusion in the network (useful for tem-
poral analysis)

N vector of types or class of each individual (column) in the group by individual
matrix (for subsetting)

vector of class(es)/type(s) to include in the network (subset of classes)

Calculate the lagged association rate for given timesteps.

Value

Returns a matrix with Log(time) in the first column and the lagged association rate in the second

16 LRA

Author(s)

Damien R. Farine

References

Whitehead (2008) Analyzing Animal Societies section 5.5.1

Examples

data("group_by_individual")
data("times")
data("individuals")

calculate lagged association rate for great tits
lagged_rates <- LAR(gbi,times, 3600, classes=inds$SPECIES, which_classes="GRETI")

plot the results

plot(lagged_rates, type='l', axes=FALSE, xlab="Time (hours)", ylab="LAR", ylim=c(0,1))
axis(2)

axis(1, at=lagged_rates[,1], labels=c(1:nrow(lagged_rates)))

LRA Dyadic Lagged Association Rate

Description

Calculate lagged association rate g(tau) from Whitehead (2008) for each dyad individually

Usage

LRA(group_by_individual, times, timejump, output_style = 1, min_time = NULL,
max_time = NULL, identities = NULL, which_identities = NULL, locations = NULL,
which_locations = NULL, start_time = NULL, end_time = NULL, classes = NULL,
which_classes = NULL, association_rate = TRUE)

Arguments

group_by_individual
a K x N matrix of K groups (observations, gathering events, etc.) and N individ-
uals (all individuals that are present in at least one group)

times K vector of times defining the middle of each group/event
timejump step length for tau

output_style either 1 or 2, see details

min_time minimum/starting value of tau

max_time maximum/ending value of tau

LRA 17

identities N vector of identifiers for each individual (column) in the group by individual
matrix
which_identities

vector of identities to include in the network (subset of identities)

locations K vector of locations defining the location of each group/event
which_locations
vector of locations to include in the network (subset of locations)

start_time element describing the starting time for inclusion in the network (useful for tem-
poral analysis)

end_time element describing the ending time for inclusion in the network (useful for tem-
poral analysis)

classes N vector of types or class of each individual (column) in the group by individual
matrix (for subsetting)

which_classes vector of class(es)/type(s) to include in the network (subset of classes)
association_rate
calculate lagged rate of association (see details)

Details

Calculates the dyadic lagged association rate. The lagged rate of association incorporates the num-
ber of observations of each individuals as a simple ratio index within each time period, leading to
a better estimation of the assocation rate for data where many observations of individuals can be
made within a single time period.

Value
If output_style == 1 then a stack of matrices is returned that is N x N x tau. If output_style ==
2 then a dataframe is returned containing the focal ID, associate, tau, and lagged association rate.

Author(s)

Damien R. Farine

References

Expanded from Whitehead (2008)

Examples

data("group_by_individual")
data("times")
data("individuals")

calculate lagged association rate
lagged_rates <- LRA(gbi, times, 3600, classes=inds$SPECIES, which_classes="GRETI", output_style=2)

do something (run a model, plot a surface, etc..)

18 mrqap.custom.null

mrgap.custom.null MRQAP function with custom permutation networks

Description

Calculate MRQAP with random networks provides (i.e. generated by a custom model of user’s

choice)
Usage
mrqgap.custom.null(formula, random.y, intercept = TRUE, directed = "undirected”,
diagonal = FALSE, test.statistic = "t-value”,
tol = 1e-07)
Arguments
formula input formula (e.g. y ~ x1 + x2), where y and each x are NxN matrices
random.y a k x N x N matrix containing a set of random networks generated by some
permutation method
intercept calculate intercept (TRUE or FALSE value)
directed whether the network is directed or undirected (enter either "directed" or "undi-
rected")
diagonal whether to include self-loop values (TRUE or FALSE)
test.statistic what to calculate P-value, either t-statistic ("t-value") or regression coefficient
(”beta”)
tol tolerance value for the qr function
Details

Calculate the regression coefficient for each input matrix using MRQAP but where the random
networks are provided. This is in contrast to mrqap.dsp which has a built-in node permutation
(which I have shown has higher rates of type II errors - see Farine & Whitehead 2015 and Farine in
prep.). This method can easily be interfaced with the network_permutation method. Note however
that this method tests whether y is related to x1 and x2 together because the different fixed effects are
not permuted independently (as suggested by Dekker et al 2007). Whilst the potential to avoid type
II errors may warrant this approach, further theoretical testing is needed to confirm this approach is
appropriate.

Value

Returns a mrqap.dsp object containing the regression coefficient and P-values for each indendent
matrix (x) and associated statistics

Author(s)

Damien R. Farine

mrqap.dsp 19

References

Dekker, D., Krackhard, D., Snijders, T.A.B (2007) Sensitivity of MRQAP tests to collinearity and
autocorellation conditions. Psychometrika 72(4): 563-581. Farine, D. R., & Whitehead, H. (2015)
Constructing, conducting, and interpreting animal social network analysis. Journal of Animal Ecol-
ogy, 84(5), 1144-1163. Farine, D. R. (in prep) Why and how to use null models in animal social
network analysis.

Examples

library(asnipe)
data("individuals")
data("group_by_individual™)

Generate network
network <- get_network(gbi)

Create a species similarity matrix
species <- array(@,dim(network))

Create a sex similarity matrix
sex <- array(@,dim(network))

Fill each matrix with 1 (same) or @ (different)

for (i in 1:nrow(network)) {

species[i,-i] <- as.numeric(inds$SPECIES[i] == inds$SPECIES[-i])
sex[i,-i] <- as.numeric(inds$SEX[i] == inds$SEX[-i])

3

Perform network randomisation
Note randomisations are limited to 10 to reduce runtime
networks_rand <- network_permutation(gbi, association_matrix=network, permutations=10)

Run mrqap.custom.null
Note randomisations are limited to 10 to reduce runtime
reg <- mrqgap.custom.null(network ~ species + sex, random.y=networks_rand)

Look at results
reg

mrgap.dsp MRQAP with Double-Semi-Partialing (DSP)

Description

Calculate MRQAP with Double-Semi-Partialing (DSP) from Dekker et al (2007)

20 mrqap.dsp

Usage

mrgap.dsp(formula, intercept = TRUE, directed = "undirected”,
diagonal = FALSE, test.statistic = "t-value”,
tol = 1e-07, randomisations = 1000)

Arguments

formula input formula (e.g. y ~ x1 + x2), where y and each x are NxN matrices

intercept calculate intercept (TRUE or FALSE value)

directed whether the network is directed or undirected (enter either "directed" or "undi-
rected")

diagonal whether to include self-loop values (TRUE or FALSE)

test.statistic what to calculate P-value, either t-statistic ("t-value") or regression coefficient
("beta")

tol tolerance value for the qr function

randomisations number of randomisations to perform for calculating P-value.

Details

Calculate the regression coefficient for each input matrix using the DSP method in Dekker et al
(2007). This method randomises the residuals from the regression on each independent variable
(fixed effect) in order to calculate the P value. This is the same as testing whether y is related to
x1 on y while controlling for x2. This differs from regular mrqap, where the dependent (y) value is
randomised, testing for whether y is related to x1 and x2 together.

Value
Returns a mrqap.dsp object containing the regression coefficient and P-values for each indendent
matrix (x) and associated statistics

Author(s)

Damien R. Farine

References

Dekker, D., Krackhard, D., Snijders, T.A.B (2007) Sensitivity of MRQAP tests to collinearity and
autocorellation conditions. Psychometrika 72(4): 563-581.

Examples

library(asnipe)
data("individuals")
data("group_by_individual")

Generate network
network <- get_network(gbi)

network_permutation 21

Create a species similarity matrix
species <- array(@,dim(network))

Create a sex similarity matrix
sex <- array(@,dim(network))

Fill each matrix with 1 (same) or @ (different)

for (i in 1:nrow(network)) {

species[i,-i] <- as.numeric(inds$SPECIES[i] == inds$SPECIES[-i])
sex[i,-i] <- as.numeric(inds$SEX[i] == inds$SEX[-i])

3

Run mrqap.dsp
Note randomisations are limited to 10 to reduce runtime
reg <- mrqgap.dsp(network ~ species + sex, randomisations=10)

Look at results
reg

network_permutation Perform Permutation

Description

Performs permutations on the data and calculates network for each step

Usage
network_permutation(association_data, data_format = "GBI", permutations = 1000,
returns=1, association_index = "SRI", association_matrix = NULL,

identities = NULL, which_identities = NULL, times = NULL, occurrences = NULL,
locations = NULL, which_locations = NULL, start_time = NULL,

end_time = NULL, classes = NULL, which_classes = NULL,

days = NULL, within_day = FALSE, within_location = FALSE, within_class = FALSE,
enter_time = NULL, exit_time = NULL, symmetric=TRUE, trialSwap=TRUE)

Arguments

association_data
a K x N matrix of K groups (observations, gathering events, etc.) and N individ-
uals (all individuals that are present in at least one group) OR a K x N x N array
of sampling periods.

data_format "GBI" expect a group by individual matrix, "SP" Expect a sampling periods
array

permutations number of permutations (default = 1000)

22

network_permutation

returns number of swaps to perform between each association matrix that is returned
(default=1)
association_index
"SRI"” Simple ratio index, "HWI" Half-weight index (more to come)
association_matrix
provide a starting association matrix (see details)
identities N vector of identifiers for each individual (column) in the group by individual

matrix
which_identities

vector of identities to include in the network (subset of identities)
times K vector of times defining the middle of each group/event

occurrences N x S matrix with the occurrence of each individual in each sampling period
(see details) containing only Os and 1s

locations K vector of locations defining the location of each group/event

which_locations
vector of locations to include in the network (subset of locations)

start_time element describing the starting time for inclusion in the network (useful for tem-
poral analysis)

end_time element describing the ending time for inclusion in the network (useful for tem-
poral analysis)

classes N vector of types or class of each individual (column) in the group by individual
matrix (for subsetting)

which_classes vector of class(es)/type(s) to include in the network (subset of classes)

days K vector of day stamp for each event (can be integer or string representing any
period of time)

within_day if TRUE then permutations will be done within the time periods

within_location
if TRUE then permutations will be done within the given locations

within_class if TRUE then permutations will be done within the given classes

enter_time N vector of times when each individual entered the population
exit_time N vector of times when each individual departed the population
symmetric Boolean to ensure that permutations maintain symmetry within sampling peri-
ods if using data_format="SP"
trialSwap Boolean to include trial swaps (if true, then every attempted permutation is re-
turned)
Details

Performs permutations on the group by individual matrix as given by Whitehead (2008). In order to
save computing, only the recently swapped individuals are recalculated, hence why the association
matrix of the original data can be provided or is recalculated.

This implementation allows permutations (swaps) to be restricted to within any of three classes.
Though each class is labelled, the function is flexible. Hence, days can represent any time period
(months, hours, etc.).

network_permutation 23

Swaps are implemented in a hybrid between the trial swaps proposed by Miklos and Podani (2004)
and full swaps (a swap every permutation). Every permutation, a candidate edge is selected (as op-
posed to a dyad which could or could not have an edge, as proposed by Miklos and Podani). Then a
second possible dyad is selected, from all dyads. If the selected portions of the data satisfy the base-
line rules (e.g. the checkerboard pattern), then either the selection is attempted again trialSwap =
FALSE or not trialSwap = TRUE. This should be set to TRUE, but the option for FALSE is provided
for legacy analyses (full swap).

See get_network function for additional details on each field.

Value

Returns a p x N x N stack of matrices with the dyadic association rates of each pair of individuals
after each swap or after a number of swaps, where p = ceiling(permutations/returns)

Author(s)

Damien R. Farine

References

Whitehead (2008) Analyzing Animal Societies
Examples

USING TIMES, ETC.

data("group_by_individual")
data("times")

subset GBI (to reduce run time of the example)
ghi <- gbi[,1:80]

define to 2 x N x N network to hold two association matrices
networks <- array(@, c(2, ncol(gbhi), ncol(gbi)))

calculate network for first half of the time
networks[1,,] <- get_network(gbi, data_format="GBI",
association_index="SRI"”, times=times, start_time=0,
end_time=max(times)/2)

networks[2,,] <- get_network(gbi, data_format="GBI",
association_index="SRI"”, times=times,
start_time=max(times)/2, end_time=max(times))

calculate the weighted degree
library(sna)
deg_weighted <- degree(networks,gmode="graph"”, g=c(1,2), ignore.eval=FALSE)

perform the permutations constricting within hour of observation
note permutations are limited to 10 to reduce runtime
networkl_perm <- network_permutation(gbi, data_format="GBI",

24

network_permutation

association_matrix=networks[1,,], times=times, start_time=0,

end_time=max(times)/2, days=floor(times/3600), within_day=TRUE,

permutations=10)

network2_perm <- network_permutation(gbi, data_format="GBI",
association_matrix=networks[2,,], times=times,

start_time=max(times)/2, end_time=max(times), days=floor(times/3600), within_day=TRUE,
permutations=10)

calculate the weighted degree for each permutation

deg_weighted_perml <- degree(networkl_perm,gmode="graph", g=c(1:10), ignore.eval=FALSE)
deg_weighted_perm2 <- degree(network2_perm,gmode="graph”, g=c(1:10), ignore.eval=FALSE)
detach(package:sna)

plot the distribution of permutations with the original data overlaid
par(mfrow=c(1,2))

hist(colMeans(deg_weighted_perm1),breaks=100,

main=paste("P = ",

sum(mean(deg_weighted[,1]) < colMeans(deg_weighted_perml1))/ncol(deg_weighted_perm1)),
xlab="Weighted degree”, ylab="Probability")

abline(v=mean(deg_weighted[,1]), col='red')
hist(colMeans(deg_weighted_perm2),breaks=100,

main=paste("P = ",

sum(mean(deg_weighted[,2]) < colMeans(deg_weighted_perm2))/ncol(deg_weighted_perm2)),
xlab="Weighted degree”, ylab="Probability")

abline(v=mean(deg_weighted[,2]), col='red')

DOUBLE PERMUTATION EXAMPLE (see Farine & Carter 2021)

Load data
data("group_by_individual”)
data("times")

subset GBI (to reduce run time of the example)
ghi <- gbil[,1:40]

Specify metric
metric <- "DEGREE"

calculate observed network
network <- get_network(gbi, data_format="GBI",
association_index="SRI", times=times)

Calculate observed metric (degree)
degrees <- rowSums(network)

Do randomisation (as above, permutations should be >=1000)
networks.perm <- network_permutation(gbi, data_format="GBI",
association_matrix=network, times=times, permutations=10)

Now calculate the same metric on all the random networks
degrees.rand <- apply(networks.perm,1,function(x) { rowSums(x)3})

network_swap 25

Now substract each individual's median from the observed
degree.controlled <- degrees - apply(degrees.rand,1,median)

Now use degree.controlled for any later test. For example, to related against a trait:

Make a trait
trait <- rnorm(length(degree.controlled))

get the coefficient of this:
coef <- summary(lm(degree.controlled~trait))$coefficients[2,3]

Compare this to a node permutation

(here just randomising the trait values)
note this should be done >= 1000 times
n.node.perm <- 10

coefs.random <- rep(NA, n.node.perm)

for (i in 1:n.node.perm) {
trait.random <- sample(trait)
coefs.random[i] <- summary(lm(degree.controlled~trait.random))$coefficients[2,3]

}

calculate P value (note this is only one sided)
P <- sum(coef <= coefs.random)/n.node.perm

network_swap Perform one (or more) random swap

Description

Performs one (or more) random swap on the data and re-calculates network, returning both the new
network and the data stream

Usage
network_swap(association_data, data_format = "GBI", swaps = 1,
association_index = "SRI", association_matrix = NULL,

identities = NULL, which_identities = NULL, times = NULL,
occurrences = NULL, locations = NULL, which_locations = NULL,
start_time = NULL, end_time = NULL, classes = NULL,
which_classes = NULL, days = NULL, within_day = FALSE,
within_location = FALSE, within_class = FALSE, symmetric=TRUE,
trialSwap=TRUE)

26 network_swap

Arguments

association_data
a K x N matrix of K groups (observations, gathering events, etc.) and N individ-
uals (all individuals that are present in at least one group) OR a K x N x N array
of sampling periods.

data_format "GBI" expect a group by individual matrix, "SP" Expect a sampling periods
array
swaps number of swaps (default = 1000)

association_index
"SRI" Simple ratio index, "HWI" Half-weight index (more to come)

association_matrix

provide a starting association matrix (see details)

identities N vector of identifiers for each individual (column) in the group by individual
matrix

which_identities
vector of identities to include in the network (subset of identities)

times K vector of times defining the middle of each group/event

occurrences N x S matrix with the occurrence of each individual in each sampling period
(see details) containing only Os and 1s

locations K vector of locations defining the location of each group/event

which_locations
vector of locations to include in the network (subset of locations)

start_time element describing the starting time for inclusion in the network (useful for tem-
poral analysis)

end_time element describing the ending time for inclusion in the network (useful for tem-
poral analysis)

classes N vector of types or class of each individual (column) in the group by individual
matrix (for subsetting)

which_classes vector of class(es)/type(s) to include in the network (subset of classes)

days K vector of day stamp for each event (can be integer or string representing any
period of time)

within_day if TRUE then permutations will be done within the time periods

within_location
if TRUE then permutations will be done within the given locations

within_class if TRUE then permutations will be done within the given classes

symmetric Boolean to ensure that permutations maintain symmetry within sampling peri-
ods if using data_format="SP"

trialSwap Boolean to include trial swaps (if TRUE, then every attempted permutation is
returned)

network_swap 27

Details

Performs one or more permutation swaps on the group by individual matrix as given by Whitehead
(2008). In order to save on memory use, this function computers the number of swaps and returns
the association matrix and the data stream resulting from these, thus not needing to create a large
stack of networks to store each permutation. This can then be implemented in a loop as shown in the
example below. Note that this method is quite a bit slower than the network_permutation function.

This implementation allows permutations (swaps) to be restricted to within any of three classes.
Though each class is labelled, the function is flexible. Hence, days can represent any time period
(months, hours, etc.). However, unlike the network_permutation, the subsetting of the data must be
done outside of this function (for reasons that might be obvious) - see the example below.

Trial swaps are implemented following Miklos and Podani (2004). Every permutation, a candidate
swap is selected. If the selected portions of the data satisfy the baseline rules (e.g. the checkerboard
pattern), then either the selection is attempted again trialSwap = FALSE or not trialSwap = TRUE.
This should be set to TRUE, but the option for FALSE is provided for legacy analyses.

Value

Returns a list containing an N x N matrix with the dyadic association rates of each pair of individuals
after performing the swaps, and the N x N data stream post-swap, as two list elements.

Author(s)

Damien R. Farine

References

Whitehead (2008) Analyzing Animal Societies

Examples

load data
data("group_by_individual")
data("times")

subset GBI (to reduce run time of the example)
gbi <- gbil,1:80]

calculate network for data based on morning associations
network <- get_network(gbi, association_index="SRI",
times=times, start_time=0, end_time=max(times)/2)

perform 100 permutations and calculate the coefficient

of variance after each permutation.

note that the subsetting is done outside of the function
library(raster)

cvs <- rep(NA,100)

network_perm = list(network,gbi[which(times <= max(times)/2),1]1)
hours <- floor(times/3600)[which(times <= max(times)/2)]

for (i in 1:100) {

28 print.mrqap.dsp

network_perm <- network_swap(network_perm[[2]], swaps=1,
association_matrix=network_perm[[1]], days=hours,
within_day=TRUE)

cvs[i] <- cv(network_perm[[1]])

}

plot the results with the original network as a red dot
plot(cvs,pch=20,cex=0.5)
points(@,cv(network),cex=1,pch=20,col="red")

print.mrgap.dsp Print function for mrqap.dsp

Description

Print function for MRQAP DSP function

Usage
S3 method for class 'mrgap.dsp'
print(x, ...)
Arguments
X an mrqap.dsp object (from function in asnipe package)
Further arguments passed to or from print methods
Details

Print formatted results.

Value

Prints formatted results

Author(s)

Damien R. Farine

References

see mrqap.dsp function

times 29

times Observation Time for each Flock Contained in the Group by Individual
data

Description

The start time for each flock in the group by individual data since the first flock observed.

Usage

data("times")

Format

An integer array with the time (in seconds since the first flock of the day).

Source

Farine, D.R., Garroway, C.J., Sheldon, B.C. (2012) Social Network Analysis of mixed-species
flocks: exploring the structure and evolution of interspecific social behaviour. Animal Behaviour
84: 1271-12717.

Examples

data("times")
data("group_by_individual™)
rownames(ghi) <- times

Index

+ datasets
ghi, 2
identified_individuals, 13
inds, 14
times, 29

asnipe (asnipe-package), 2
asnipe-package, 2

ghi, 2
get_associations_points_tw, 3
get_group_by_individual, 4
get_network, 6
get_sampling_periods, 8
gmmevents, 10

identified_individuals, 13
inds, 14

LAR, 15
LRA, 16

mrgap.custom.null, 18
mrgap.dsp, 19

network_permutation, 21
network_swap, 25

print.mrgap.dsp, 28

times, 29

30

	asnipe-package
	gbi
	get_associations_points_tw
	get_group_by_individual
	get_network
	get_sampling_periods
	gmmevents
	identified_individuals
	inds
	LAR
	LRA
	mrqap.custom.null
	mrqap.dsp
	network_permutation
	network_swap
	print.mrqap.dsp
	times
	Index

