Package ‘aqfig’

July 2, 2024
Type Package
Version 0.9
Date 2024-06-27
Title Display Air Quality Model Output and Monitoring Data
Imports graphics, grDevices, stats, geoR
Suggests maps

Description
Display air quality model output and monitoring data using scatterplots, grids, and legends.

License Unlimited
LazyData true
NeedsCompilation no

Author Jenise Swall [aut, cre],
Kristen Foley [ctb]

Maintainer Jenise Swall <jswall@vcu.edu>
Repository CRAN
Date/Publication 2024-07-02 06:20:10 UTC

Contents

agfig-package e e
kristen.colors e
ozonel L e
OZONC2 . .« . v v it e e e e e e e
plot3d.points oL e e e e e e
ragged.image e e e e e e e e e e
scatterplot.density e e e
vertical.image.legend L.

Index

2 kristen.colors

aqfig-package Functions to help draw figures displaying air quality data and model
output

Description

This package contains several functions to help users draw figures to display air pollution measure-
ments and air quality model output. These include functions to place a color legend to the right of a
plot, to draw a scatterplot with the points’ colors or sizes reflecting the value of a response variable,

etc.
kristen.colors Sets up a color palette which is particularly appropriate for use with
the scatterplot.density function
Description

This function sets up a color palette with n colors, with gradually changing hues of grey, purple,
blue, green, yellow, orange, red, and brown (in this order). This palette is a particularly good choice
for scatterplot.density function, for which it is the default choice.

Usage

kristen.colors(n=64)

Arguments

n Number of colors to include in palette.

Details

This function calls colorRampPalette and returns n colors from this palette.

Value

Returns n colors (in hexadecimal).

Note
This function is called by default by the function scatterplot.density, which is included in this
package.

Author(s)

Original code was authored by Kristen Foley and included in the precursor to scatterplot.density.
Packaged into a new function by Jenise Swall.

ozonel 3

See Also

colorRampPalette

ozonel Daily maximum ozone concentrations

Description
This data set gives the daily maximum ozone concentrations (in ppb) observed at a subset of 23
Clean Air Status and Trends Network (CASTNET) monitoring sites on August 9, 2004.

Usage

ozonel

Format

A file in CSV format containing 23 records.

Source

Hourly ozone data at CASTNET sites can be obtained from EPA’s Clean Air Status and Trends
Network program at http://www.epa.gov/castnet. Thanks to Steven Howard for his help collating
and summarizing these hourly data.

ozone2 Daily maximum ozone concentrations

Description
This data set gives the daily maximum ozone concentrations (in ppb) observed at a subset of 23
Clean Air Status and Trends Network (CASTNET) monitoring sites on August 10, 2004.

Usage

ozone2

Format

A file in CSV format containing 23 records.

Source

Hourly ozone data at CASTNET sites can be obtained from EPA’s Clean Air Status and Trends
Network program at http://www.epa.gov/castnet. Thanks to Steven Howard for his help collating
and summarizing these hourly data.

plot3d.points

plot3d.points

Make 3-D scatterplot (using colored or differently-sized points)

Description

Given a list of points’ coordinates and the values observed at those points, return a scatterplot with
points located as specified by the coordinates and coded by color and/or size to represnt the observed
value at the location. This code is basically a wrapper for a call to the function points.geodata in

the geoR package.

Usage

plot3d.points(x, y, z, zlim = range(z, na.rm = TRUE),
add = FALSE, col = heat.colors(12), xlab, ylab,

pch = 21, cex.min = 1, cex.max = 1,
symbol.border.col = "black”,
plt.beyond.zlim = FALSE, ...)
Arguments
X x-coordinates of locations at which response values z are recorded.
y y-coordinates of locations at which response values z are recorded.
z Response values z observed at locations whose coordinates are given by (x, y).
zlim Vector of minimum and maximum values of z to which to assign the two most
extreme colors in the col argument (col[1] and col[length(col)]). Default is to
use the range of z. This is very much like the z1im argument to the image
function.
add If FALSE (default), the function will begin a new plot. If TRUE, adds scatterplot
to a pre-existing plot.
col Color range to use for the scatterplot, with the first color assigned to zlim[1] and
last color assigned to zlim[2]. Default is “heat.colors(12)”, as it is for image.
xlab The label for the x-axis. If not specified by the user, defaults to the expression
the user named as parameter x. This behavior is similar to that for plot.
ylab The label for the y-axis. If not specified by the user, defaults to the expression
the user named as parameter y. This behavior is similar to that for plot.
pch The point symbol to use. Possible values are 21, 22, 23, 24, and 25. This
is because points.geodata requires these points, which have outlines around
them. Default is a circle (‘pch=21").
cex.min Minimum amount to shrink/expand the point symbols.
cex.max Maximum amount to shrink/expand the point symbols.

Parameters cex.min and cex.max control the minimum and maximum amounts to shrink/expland
the points, based on the value of z. By default, these are both set to one, which makes all the points
the same size. For more information, see the help page for points.geodata.

plot3d.points 5

symbol.border.col
This controls the color of the border around the plotting symbol. By default, it

999

is black. If a border is not desired, use ‘symbol.border.col="transparent™’.
plt.beyond.zlim

IF TRUE, and if z1im is specified by the user, z values beyond the limits given
in z1im are plotted. Values less than zlim[1] are plotted in the same color as
zlim[1]; values greater than zlim[2] are plotted in the same color as zlim[2].
If TRUE, and zlim is not specified by the user, zlim[1] and zlim[2] will be
assigned the minimum and maximum values of z. In this case, user is warned
and plt.beyond.zlim is set to FALSE. Default is plt.beyond.zlim==FALSE.

Any other parameters the user adds will be passed to the plot function if ‘add=FALSE’,
and may include options for axis labels, titles, etc.

Details

This function is a wrapper to the points.geodata function in the geoR package.

Value

A scatterplot with points at (x,y). These points are colored according to the correspoinding value of
z and the colors specified in col. They are sized according to the corresponding value of z and the
minimum and maximum sizes specified by cex.min and cex.max.

Author(s)

Jenise Swall

See Also

points.geodata, points

Examples

Plot ozone at each location using colors from rainbow.colors

and differently-sized points. Add a legend using function

vertical.image.legend (included in this package).

data(ozonel)

col.rng <- rev(rainbow(n=10, start=0, end=4/6))

z.rng <- c(40, 90)

plot3d.points(x=ozonel$longitude, y=ozonel$latitude, z=ozonel$daily.max,
xlab="longitude"”, ylab="latitude"”, col=col.rng,
zlim=z.rng, cex.min=0.5, cex.max=1.5)

To verify, label the points with their concentrations.

text(ozonel$longitude, ozonel$latitude+@.15, ozonel$daily.max, cex=0.7)

If maps package is available, put on state lines.

if (require("maps”)) map("state”, add=TRUE, col="lightgray")

Put on legend.

vertical.image.legend(col=col.rng, zlim=z.rng)

Plot second day of ozone data. Note that day 2 experienced a smaller

6 ragged.image

range of concentrations, so we plot day 2 on same scale as day 1.

data(ozonel)

data(ozone2)

z.rng <- c(40, 90)

col.rng <- rev(rainbow(n=10, start=0, end=4/6))

plot3d.points(x=ozone2$longitude, y=ozone2$latitude, z=ozone2$daily.max,
xlab="1longitude"”, ylab="latitude", col=col.rng,
zlim=z.rng, cex.min=0.5, cex.max=1.5)

To verify, label the points with their concentrations.

text(ozone2$longitude, ozone2$latitude+@.15, ozone2$daily.max, cex=0.7)

If maps package is available, put on state lines.

if (require("maps”)) map(”"state”, add=TRUE, col="lightgray")

vertical.image.legend(col=col.rng, zlim=z.rng)

When some z value(s) is/are much lower/higher than the others,

the outlying value(s) may appear in color at the extent

of the range, with the remainder of the data clustered in one (or
just a few) color bin(s).

x <-1:9

y <= 1:9

z <- c(0, 47:53, 100)

col.rng <- rev(rainbow(n=7, start=0, end=4/6))
plot3d.points(x, y, z, col=col.rng)
text(x, y+0.2, z, cex=0.8)

In vain, you might try to "fix" this by setting zlim so that the
color range reflects the main portion of the z values. You may
assume that the outlying value(s) will show up in the extreme edges
of the color range, but what will actually happen is that the

outlying values won't be plotted.

plot3d.points(x, y, z, col=col.rng, zlim=c(47, 53))

text(x, y+0.2, z, cex=0.8)

ETE T

Instead, specify zlim to reflect the main porition of the z values,

and set plt.beyond.z1lim=TRUE. Now, z values below zlim[1] will be

plotted in the same color as zlim[1]; those above zlim[2] will be

plotted like z values of zlim[2]. But, remember, now there are

outlying values whose maginitudes cannot be easily ascertained!
plot3d.points(x, y, z, zlim=c(47, 53), col=col.rng, plt.beyond.zlim=TRUE)
text(x, y+0.2, z, cex=0.8)

ragged.image Produces a "ragged" image plot

Description

This code produces an image plot in the case in which there is not a known response value z for
every possible combination of x and y. This ragged image plot is a variant of an image plot which
is not complete across the entire rectangle of the gridded area.

ragged.image 7
Usage
ragged.image(x, y, z, zlim = range(z, na.rm = TRUE), add = FALSE,
col = heat.colors(12), xlab, ylab, plt.beyond.zlim = FALSE, ...)
Arguments
X x-coordinates of grid cell centers at which response values z are available.
y y-coordinates of grid cell centers at which response values z are available.
z Response values recorded at the grid cell centers whose coordinates are given
by (x, y).
zlim Vector of minimum and maximum values of z to which to assign the two most
extreme colors in the *col’ argument (col[1] and col[length(col)]). Default is to
use the range of z. This is very much like the ’zlim’ argument to the image
function.
add If FALSE (default), the ragged image will begin a new plot. If TRUE, adds
ragged image to a pre-existing plot.
col Color range to use for the ragged image, with the first color assigned to zlim[1]
and last color assigned to zlim[2]. Default is "heat.colors(12)", as it is for image.
xlab The label for the x-axis. If not specified by the user, defaults to the expression
the user named as parameter x. This behavior is similar to that for image.
ylab The label for the y-axis. If not specified by the user, defaults to the expression

plt.beyond.zlim

Details

the user named as parameter y. This behavior is similar to that for image.

IF TRUE, and if z1im is specified by the user, z values beyond the limits given
in zlim are plotted. Values less than zlim[1] are plotted in the same color as
zlim[1]; values greater than zlim[2] are plotted in the same color as zlim[2].
If TRUE, and zlim is not specified by the user, zlim[1] and zlim[2] will be
assigned the minimum and maximum values of z. In this case, user is warned
and plt.beyond.zlim is set to FALSE. Default is plt.beyond.zlim==FALSE.

Any additional parameters to be passed to the image function, if add=FALSE.

This code produces a ragged image plot. This is in contrast to the standard image function, which
assumes that there is a known response value z for every combination of the elements of x and y, i.e.
that there is a complete rectangular grid, or image. A ragged image plot is a variant of the regular
image plot which is not complete across the entire rectangle. The user specifies vectors X, y, and z,
such that x and y identify a portion of the grid. This function maps the vector z onto a matrix of
the type needed for the image function, but has NA entries for combinations of x and y that are not
listed. The NA values are not plotted by image, so a ragged image will appear.

Value

A ragged image, i.e. a portion of an image for which we have specified grid cell centers x and y.

8
Note
This function is slow if x, y, and z are long vectors.
Author(s)
Jenise Swall
See Also
image, heat.colors
Examples
Build x, y, and z.
x <-c(1, 2, 3,1, 2, 3)
y <-c(1,1,1,2,2,2)
z <-1:6
z.mat <- matrix(c(1:6), ncol=2)

col.rng <- terrain.colors(6)

Show complete matrix.

image(x=unique(x), y=unique(y), z.mat, zlim=range(z), col=col.rng,
xlab="x", ylab="y")

Plot only part of this as a ragged image. Set z range so that this

image will use colors consistent with the previous one.

ragged.image(x=x[1:4], y=y[1:4]1, z=z[1:4], zlim=range(z), col=col.rng,

xlab="x", ylab="y")

When some z value(s) is/are much lower/higher than the others,
the outlying value(s) may appear in color at the extent

of the range, with the remainder of the data clustered in one (or
just a few) color bin(s).

<-c(1, 2, 3,1, 3,2, 3,1, 3)

<- c(4, 4, 4,3,3,2,2,1, 1)

<- c(0, 47:53, 100)

col.rng <- rev(rainbow(n=7, start=0, end=4/6))

ragged.image(x, y, z, col=col.rng)

text(x, y, z, cex=0.8)

N < X # 3 # #

In vain, you might try to "fix" this by setting zlim so that the
color range reflects the main portion of the z values. You may
assume that the outlying value(s) will show up in the extreme edges
of the color range, but what will actually happen is that the
outlying values won't be plotted.

ragged.image(x, y, z, col=col.rng, zlim=c(47, 53))

text(x, y, z, cex=0.8)

% ¥ o

Instead, specify zlim to reflect the main porition of the z values,
and set plt.beyond.zlim=TRUE. Now, z values below zlim[1] will be
plotted in the same color as zlim[1]; those above zlim[2] will be
plotted like z values of zlim[2]. But, remember, now there are

ragged.image

scatterplot.density 9

outlying values whose maginitudes cannot be easily ascertained!
ragged.image(x, y, z, zlim=c(47, 53), col=col.rng, plt.beyond.z1lim=TRUE)
text(x, y, z, cex=0.8)

scatterplot.density Use color to show the density of points in a scatterplot

Description

The plotting region of the scatterplot is divided into bins. The number of data points falling within
each bin is summed and then plotted using the image function. This is particularly useful when
there are so many points that each point cannot be distinctly identified.

Usage

scatterplot.density(x, y, zlim, xylim, num.bins=64,
col=kristen.colors(32), xlab, ylab, main, density.in.percent=TRUE,
col.regression.line=1, col.one.to.one.line=grey(0.4),

col.bar.legend=TRUE, plt.beyond.zlim=FALSE, ...)
Arguments
X Vector or matrix of x-coordinates of points to be plotted. Missing values are not
permitted.
y Vector or matrix of y-coordinates of points to be plotted. Missing values are not
permitted.
zlim Vector defining the minimum and maximum of the data density values, to which

to assign the two most extreme colors in the col argument. If not specified, the
range of the calculated density values to be plotted is used.

xylim Specification of extreme values that the first and last bins are expected to con-
tain in the x- and y-directions. May be a single vector of the limits for the x
and y axes; e.g., using ‘xylim=c(0,120)’ specifies that, in both the x- and y-
directions, the first bin should contain 0 and the last contain 120. May also be a
list in the form: ‘xylim=list(xlim=c(x1 ,x2), ylim=c(y1, y2))’, allowing
for the different ranges on the axes. If not specified, xlim is the range of x and
ylim is the range of y.
Note that xylim and num.bins together determine how the bins are defined. For
more information, see ‘“Details” below.

num.bins Number of bins to be used when calculating the data density in both the x- and
y-directions. May be a single number, e.g. ‘num.bins=50’, which produces 50
bins in each direction. May also be a list in the form ‘num.bins=1list(num.bins.x=n1,
num.bins.y=n2)’ to specify differing numbering of bins for the x- and y-directions.
The default is to use 64 bins for both axes (‘num.bins=64").
Note that xylim and num.bins together determine how the bins are defined. For
more information, see “Details” below.

10 scatterplot.density

col Color range to use when drawing bins, with the first color assigned to ‘z1im[1]’
and last color assigned to ‘z1im[2]’. Default is ‘kristen.colors(32)’.

xlab The label for the x-axis. If not specified by the user, defaults to the expression
the user named as parameter x. This behavior is similar to that for image.

ylab The label for the y-axis. If not specified by the user, defaults to the expression
the user named as parameter y. This behavior is similar to that for image.

main The main title for the density scatterplot. If not specified, the default is “Data
Density Plot (%)” when ‘density.in.percent=TRUE’, and “Data Frequency
Plot (counts)” otherwise.

density.in.percent
A logical indicating whether the density values should represent a percentage of
the total number of data points, rather than a count value. Defaultis ‘density.in.percent=TRUE’.

col.regression.line
A color number or color name for the regression line and estimated regression
equation (y as a linear function of x) to be overlaid on density scatterplot. If
NULL, the regression line and equation are not displayed. Defaults to a black
line and equation text.

col.one.to.one.line
A color number or color name for the regression one-to-one line to be overlaid
on density scatterplot. If NULL, the one-to-one line is not displayed. Defaults
to a dark grey line. If the one-to-one line is displayed, it will be as a dashed line
(‘1ty=3").

col.bar.legend A logical indicating whether a “color legend” of the form given by vertical.image.legend
should be displayed. The default is ‘col.bar.legend=TRUE’.

plt.beyond.zlim
IF TRUE, and if z1im is specified by the user, density values beyond the lim-
its given in z1im are plotted. Values less than ‘z1im[1] are plotted in the
same color as ‘z1im[1]’; values greater than ‘z1im[2] are plotted in the same
color as ‘z1im[2]’. If TRUE, and z1lim is not specified by the user, ‘z1im[1]’
and ‘z1im[2]" will be assigned the minimum and maximum values of z. In
this case, user is warned and plt.beyond.zlim is set to FALSE. Default is
‘plt.beyond.z1lim=FALSE’.

Any additional parameters to be passed to the image function.

Details

The plotting region of the scatterplot is divided into bins. The number of data points falling within
each bin is summed and then plotted using the image function. The default is to plot the percent of
the data falling within each bin, rather than a raw count value. The arguments xylim and num.bins
can include different settings for the x- and y-axis. This makes it easier to plot different variables
on each axis, e.g. temperature vs. ozone. Note that xylim and num.bins together determine how
the bins are defined.

Note that xylim and num.bins together determine how the bins are defined. This is done using the
cut function. Assigning values to bins is more complicated than might be expected. For example,
values that fall at cutoff points between bins are difficult to deal with. This function accepts the
default setting for cut, which assigns values which fall on a cutoff point to the bin on the left; that

scatterplot.density 11

is, the intervals are open on the left and closed on the right. This means that a point with x-value
equal to ‘x1im[1]” and/or y-value equal to ‘y1im[1]” would not be assigned to any interval, which
is probably not what the user intends in this circumstance. Therefore, this code determines the
number of bins in the x-direction so that ‘x1im[1]” and ‘x1im[2]’ are at the center of the first and
last bin in the x-direction (and similarly for the y-direction). This means that the first and last bins
actually extend a bit past the limits specified. For most applicatons, which use large numbers of
data points and bins, this shouldn’t be noticeable, but it may be in smalled examples like the first
one given below.

Value

A density scatterplot; that is, a pattern of shaded squares representing the counts/percentages of the
points falling in each square.

Author(s)

Original version (plot.density.scatter.plot) by Kristen Foley, adapted for aqfig by Jenise
Swall

See Also

vertical.image.legend, kristen.colors, image, cut

Examples

As a simple test case, build x and y vectors consisting only of the
integers 1-3.
x <= c(rep(1, 7), rep(2, 12), rep(3, 6))
y <= c(rep(1, 5), rep(2, 2), rep(1, 2), rep(2, 8), rep(3, 2),
rep(2, 2), rep(3, 4))

For this test case, I've totaled the counts below.
count.df <- data.frame(x=rep(1:3, each=3), y=rep(1:3, times=3), ct=c(5,
2, 0,2, 8,2,0,2, 4))

Make a density scatterplot with counts.

scatterplot.density(x, y, num.bins=3, col=heat.colors(7),
density.in.percent=FALSE,
col.one.to.one.line="green")

text(count.df$x, count.df$y, count.df$ct, col="purple")

Make a density scatterplot with percentages.
scatterplot.density(x, y, num.bins=3, col=heat.colors(7), col.one.to.one.line=1)
text(count.df$x, count.df$y, count.df$ct/sum(count.df$ct))

An example closer to actual usage.
X <= rnorm(100000,50,5)

y <= 3 + (.89%x) + rnorm(100000,0,5)
scatterplot.density(x, y)

12 vertical.image.legend

vertical.image.legend Put color bar legend in the right plot margin.

Description

Put color bar legend in the right-hand side margin of an existing plot.

Usage

vertical.image.legend(zlim, col)

Arguments
zlim Gives the range of z values to which the colors specified in col are assigned.
col Gives the range of colors to use. To keep multiple plots consistent in terms of
the colors assigned to various values, keep z1im and col the same for each of
the plots and the legend.
Details

This function works best when there is only one plot on the device, in which case the margin space
is straightforward (no confusion between oma/omi and mar/mai, etc. The user should finish making
the main portion of the plot before adding the legend; i.e., the user should add the legend last. This
function alters the par settings to draw the legend. Upon exit, it resets them back to what they were
before the function call.

Value

Puts vertical color bar legend to the right of the plot.

Note

Putting a legend on a plot is harder than it might seem. The user may have to experiment with this
function a bit to get it to work well for a specific application. The user may also want to try the
imagePlot function in the fields package.

Author(s)

Jenise Swall

See Also

image.plot

vertical.image.legend 13

Examples

Plot ozone at each location using colors from rainbow.colors

and differently-sized points. Add a legend using function

vertical.image.legend (included in this package).

data(ozonel)

col.rng <- rev(rainbow(n=10, start=0, end=4/6))

z.rng <- c(40, 90)

plot3d.points(x=ozonel$longitude, y=ozonel$latitude, z=ozonel$daily.max,
xlab="longitude”, ylab="latitude"”, zlim=z.rng, col=col.rng,
cex.min=0.5, cex.max=1.5)

To verify, label the points with their concentrations.

text(ozonel$longitude, ozonel$latitude+@.15, ozonel$daily.max, cex=0.7)

If maps package is available, put on state lines.

if (require("maps”)) map("state”, add=TRUE, col="lightgray")

Put on legend.

vertical.image.legend(col=col.rng, zlim=z.rng)

Index

* aplot
vertical.image.legend, 12
* color
kristen.colors, 2
vertical.image.legend, 12
+ datasets
ozonel, 3
ozone2, 3
+ hplot
kristen.colors, 2
plot3d.points, 4
ragged.image, 6
scatterplot.density, 9

aqfig (aqfig-package), 2
agfig-package, 2

colorRampPalette, 2, 3
cut, 10, 11

heat.colors, 8
image, 4,7, 8,10, 11
image.plot, 12
imagePlot, 12

kristen.colors, 2, 1]

ozonel, 3
ozone2, 3

par, 12

plot, 4, 5
plot3d.points, 4
points, 5
points.geodata, 4, 5

ragged. image, 6
scatterplot.density, 2,9

vertical.image.legend, 10, 11,12

	aqfig-package
	kristen.colors
	ozone1
	ozone2
	plot3d.points
	ragged.image
	scatterplot.density
	vertical.image.legend
	Index

