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Abstract

Structured elicitation protocols, such as the IDEA protocol, may be used to elicit ex-
pert judgements in the form of subjective probabilities from multiple experts. Judgements
from individual experts about a particular phenomena must therefore be mathematically
aggregated into a single prediction. The process of aggregation may be complicated when
judgements are elicited with uncertainty bounds, and also when there are several rounds
of elicitation. This paper presents the new R package aggreCAT, which provides 28
unique aggregation methods for combining individual judgements into a single, prob-
abilistic measure. The aggregation methods were developed as a part of the Defense
Advanced Research Projects Agency (DARPA) ‘Systematizing Confidence in Open Re-
search and Evidence’ (SCORE) programme, which aims to generate confidence scores or
estimates of ‘claim credibility’ for 3000 research claims from the social and behavioural
sciences. We provide several worked examples illustrating the underlying mechanics of
the aggregation methods. We also describe a general workflow for using the software in
practice to facilitate uptake of this software for appropriate use-cases.
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Expert judgement is frequently used to inform forecasting about uncertain future events across
a range of disciplines, including ecology, conservation science, human geography, political
science, and management (Sutherland, Dicks, Everard, and Geneletti 2018). Judgements
from groups of experts tend to perform better than a single expert (Goossens, Cooke, Hale,
and Rodic-Wiersma 2008), and it is best-practice to elicit judgements from diverse groups so
that group members can bring “different perspectives, cross-examine each others’ reasoning,
and share information”, however judgements or forecasts must then be distilled into a single
forecast, ideally accompanied by estimates of uncertainty around those estimates (Hanea,
Wilkinson, McBride, Lyon, van Ravenzwaaij, Singleton Thorn, Gray, Mandel, Willcox, Gould,
and et al. 2021). Judgements from multiple experts may be combined into a single forecast
using either behavioural approaches that force experts into forming consensus, or by using
mathematical approaches (Goossens et al. 2008).

Although there are a variety of methods for mathematically aggregating expert judgements
into single point-predictions, there are few open-source software implementations available to
analysts or researchers. The R R Core Team (2017) package expert provides three models of
expert opinion to combine judgements elicited from groups of experts (CITE) , and SHELF
implements only a single method (weighted linear pool) for aggregating expert judgements
(CITE). Other R packages providing methods to mathematically aggregate expert judgements
do so for non-point predictions, for example, opera, which generates time-series predictions
(CITE). In this paper we present the aggreCAT package, which provides 28 different methods
for mathematically aggregating judgements within groups of experts into a single forecast.

1.1. DARPA SCORE program and the repliCATS project

The aggreCAT package, and the mathematical aggregators therein, were developed by the
repliCATS (Collaborative Assessment for Trustworthy Science) project as a part of the
SCORE program (Systematizing Confidence in Open Research and Evidence), funded by
DARPA (Defense Advanced Research Projects Agency) (Alipourfard, Arendt, Benjamin,
Benkler, Bishop, Burstein, Bush, Caverlee, Chen, Clark, Dreber, Errington, Fidler, Fox,
Frank, Fraser, Friedman, Gelman, Gentile, Gordon, Griffin, Gulden, Hahn, Hartman,
Holzmeister, Hu, Johannesson, Kezar, Kline Struhl, Kuter, Kwasnica, Lee, Lerman, Liu,
Loomas, Luis, Magnusson, Bishop, Miske, Mody, Morstatter, Nosek, Parsons, Pennock,
Pi, Pujara, Rajtmajer, Ren, Salinas, Selvam, Shipman, Silverstein, Sprenger, Squicciarini,
Stratman, Sun, Tikoo, Twardy, Tyner, Viganola, Wang, Wilkinson, and Wintle 2021). The
SCORE program is the largest replication project in science to date, and aims to build
automated tools that can rapidly and reliably assign “Confidence Scores” to research claims
from empirical studies in the Social and Behavioural Sciences (SBS). Confidence Scores are
quantitative measures of the likely reproducibility or replicability of a research claim or
result, and may be used by consumers of scientific research as a proxy measure for their
credibility in the absence of replication effort.

Replications are time-consuming and costly (Isager, van Aert, Bahnik, Brandt, Desoto,
Ginner-Sorolla, Krueger, Perugini, Ropovik, van’t Veer, Vranka, and Lakens 2020), and stud-
ies have shown that replication outcomes can be reliably elicited from researchers (Gordon,
Viganola, Bishop, Chen, Dreber, Goldfedder, Holzmeister, Johannesson, Liu, Twardy, Wang,
and Pfeiffer 2020). Consequently, the DARPA SCORE program generates Confidence Scores
using expert elicitation based on two very different strategies – prediction markets (Gor-
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don et al. 2020) and the IDEA protocol (Hemming, Burgman, Hanea, McBride, and Wintle
2017), the latter of which is used by the repliCATS project Fraser, Bush, Wintle, Mody,
Smith, Hanea, Gould, Hemming, Hamilton, Rumpff, Wilkinson, Pearson, Singleton Thorn,
Ashton, Willcox, Gray, Head, Ross, Groenewegen, Marcoci, Vercammen, Parker, Hoekstra,
Nakagawa, Mandel, van Ravenzwaaij, McBride, Sinnot, Vesk, Burgman, and Fidler (2021).
X of these research claims were randomly selected for direct replication, against which the
elicited and aggregated Confidence Scores are ‘ground-truthed’. These findings will aid the
development of artificial intelligence tools that can automatically assign Confidence Scores.

The repliCATS IDEA protocol

The repliCATS project adapted and deployed the IDEA protocol to elicit crowd-sourced
judgements from diverse groups about the likely replicability of SBS research claims (Fraser
et al. 2021). The IDEA (‘Investigate’, ‘Discuss’, ‘Estimate’ and ‘Aggregate’) protocol is
a four-step structured elicitation protocol that draws on the ‘wisdom of crowds’ to elicit
subjective judgements about the likelihood of uncertain events (Hemming et al. 2017, figure
1). To collect expert judgements about the replicability of SBS claims, we asked participants
to estimate the “probability that direct replications of a study would find a statistically
significant effect in the same direction as the original claim”, eliciting estimates of uncertainty
in the form of upper and lower bounds on those point-estimates. Judgements were elicited
using the repliCATS platform (Pearson, Fraser, Bush, Mody, Widjaja, Head, Wilkinson,
Sinnott, Wintle, Burgman, Fidler, and Vesk 2021), a multi-user cloud-based software platform
that implements the IDEA protocol, between July 7th 2019 and November 30th 2020.

For a single claim under assessment, between 4 and 15 experts individually drew on back-
ground information to provide estimates of the probability, including 4 numeric data points
and one character data point: an upper and lower bound, and best estimate of the event
probability, as well as justifications for their estimates, and a value on the likert binary scale
up to 7 rating the individuals’ degree of comprehension of the claim (Round 1, Investigate).
In the Discuss phase, three-point estimates from each group member are anonymously pre-
sented to the group, who then collectively discuss differences in opinion and provide potential
evidence for these differences. Group members subsequently provide a second set of proba-
bilistic judgements (Round 2, Estimate). Thus, for a single assessment, 2 sets of judgements
are elicited from each expert (pre- and post-group discussion).

During the fourth step, Aggregate, judgements are mathematically aggregated into a single
Confidence Score or forecast of replicability. The repliCATS project developed 28 different
methods for mathematically aggregating judgements elicited from groups of experts into Con-
fidence Scores (Hanea et al. 2021). We developed the aggreCAT package to implement these
aggregation methods and deliver Confidence Score for over 3000 SBS research claims for phase
one and X SBS claims for phase two of the the DARPA SCORE project.

2. Introducing the aggreCAT package

In this paper we aim to provide a detailed overview of the aggreCAT package so that re-
searchers may apply the aggregation functions described in (Hanea et al. 2021) to their own
expert elicitation datasets where mathematical aggregation is required. Note that judgements
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Figure 1: The IDEA protocol as deployed by the repliCATS project (reproduced with per-
mission from Wintle et al. 2021).

elicited using Delphi and other similar elicitation methods that use behavioural or consensus
aggregation may not be mathematically aggregated, and thus the aggreCAT package is not
applicable to datasets collected using such elicitation methods.

We begin by formulating the problem of mathematically aggregating expert judgements. Each
method, and its data requirements is summarised in Table 5. Before outlining key aggregation
methods, we briefly summarise package datasets, which were collected by the repliCATS
project. By first describing the datasets before describing the aggregation methods in detail,
we aim to provide a grounded understanding of the different outputs of expert elicitation
using the repliCATS IDEA protocol, and the inputs available to the aggregation functions.

Next, we describe and illustrate the main types of aggregators, which may be categorised
according to their data requirements, mathematical properties and computational implemen-
tation (Section 4). By selecting representative functions of each key aggregator type and ap-
plying them to a subset of focal claims, we demonstrate the internal mechanics of how these
methods differently operationalise the data to generate forecasts or Confidence Scores. We do
not give advice on the circumstances in which each method should be used, instead, choice of
aggregation method should be informed by the mathematical properties of the method, the
desired properties of an aggregation, and the purpose for which the aggregation is being used.
For a detailed description of each method as well as a discussion of their relative merits, see
(Hanea et al. 2021).

Finally, we provide a detailed workflow for aggregating expert judgments for multiple fore-
casts, using multiple aggregation functions, as implemented by the repliCATS project in the
course of delivering 3000 Confidence Scores for the DARPA SCORE program. The aggreCAT
package provides a set of supporting functions for evaluating or ground-truthing aggregated
forecasts or Confidence Scores against a set of known-outcomes, as well as functions for visu-
alising comparisons of different aggregation methods and the outcomes of performance eval-
uation. We describe and demonstrate this functionality in the presentation of the repliCATS
workflow. The workflow is representative of the probable challenges faced by the researcher
in the course of mathematically aggregating groups of forecasts, and should equip the reader
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to use aggreCAT for their own datasets; it exemplifies how to extend the aggreCAT package
to any expert judgement dataset from any domain in which there are multiple judgements
from multiple individuals that must be combined into a single forecast.

3. Mathematically Aggregating Expert Judgements

Mathematically, the aggregation methods can be divided into three main types:

• Un-weighted linear combination of best estimates, transformed best estimates or distri-
butions,

• Weighted linear combinations of best estimates, transformed best estimates and of dis-
tributions, where weights are proxies of forecasting performance constructed from char-
acteristics of participants and/or their judgements, and

• Bayesian methods that use participant judgements as data with which to update both
uninformative and informative priors.

However, the aggreCAT package user might wish to categorise the aggregation methods ac-
cording to aspects of their computational implementation and data requirements, because
these inform the function arguments as well as the type and form of the data that is parsed
to the aggregation functions. These aspects include:

• Elicitation Method, number of elicitation rounds: the majority of aggregation meth-
ods require data from only a single round of judgements, i.e. the final post-discussion
estimates. However, some aggregation methods require data from both rounds of judge-
ments, which may be elicited using the IDEA protocol or other similar structured elic-
itation protocol in which there are two rounds of judgements.

• Elicitation method, single point or three point elicitation: several aggregation methods
use only a single data point elicited from individuals (their best estimate), however,
most aggregation methods require a best estimate, and estimates of uncertainty in the
form of upper and lower bounds.

• Number of claims / forecasts assessed by the individual: some weighted aggregation
methods consist of weights that are calculated from properties of participant judgements
across multiple forecasting questions, not just the target claim being aggregation.

• Supplementary data requirements: several aggregation methods require supplementary
data collected either in addition to or as part of the repliCATS IDEA protocol, but
which need additional qualitative coding.

The data and structured elicitation protocol requirements are described in Table 5. All
aggregation methods requiring a single round of estimates can therefore be applied to expert
judgments derived from any structured elicitation protocol that generates, lower, upper, and
best estimates from each individual (i.e. not just the IDEA protocol), and does not enforce
behavioural consensus.

Notation and Problem Formulation
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Here we describe some preliminary mathematical notation used to represent each aggregation
method. For the mathematical specification of each individual aggregation function, please
consult (Hanea et al. 2021) or the aggreCAT package function documentation.

The total number of research claims, 𝑐𝑙𝑎𝑖𝑚, or unique forecasts being assessed, 𝐶 , is indexed
by 𝑐 = 1, ..., 𝐶. The total number of individuals / experts / participants is denoted by 𝑁 , and
is indexed by 𝑖 = 1, ..., 𝑁 . Each claim assumes binary values, where the value is 0 if the claim
is false, and 1 if the claim is true. ‘TRUE’ claims are claims where the replication study found
a significant result in the same direction as the original research claim, and ‘FALSE’ claims
are those where the replication study did not find a significant result in the same direction as
the original study. For each claim 𝑐, an individual 𝑖 assesses the claim as being true or false
through providing three probabilities: a lower bound 𝐿𝑖,𝑐, an upper bound 𝑈𝑖,𝑐, and a best
estimate 𝐵𝑖,𝑐, satisfying the inequalities: 0 ≤ 𝐿𝑖, 𝑐 ≤ 𝐵𝑖, 𝑐 ≤ 𝑈𝑖, 𝑐 ≤ 1.

Every claim is assessed by multiple individuals, and their probabilities are aggregated using
one of the 28 aggregation methods to obtain a group or aggregate probability, denoted by ̂𝑝𝑐.
The aggregated probability calculated using a specific method, is given by ̂𝑝𝑐 (𝑀𝑒𝑡ℎ𝑜𝑑𝐼𝐷).
Each aggregation is assigned a unique 𝑀𝑒𝑡ℎ𝑜𝑑𝐼𝐷 which is the abbreviation of the mathemat-
ical operation used in calculating the weights. Note that all Best, Lower and Upper estimates
are taken to be round 2 judgements from the repliCATS IDEA protocol Figure 1), unless
appended by a “1”, where they are round 1 judgements, e.g. 𝐵1𝑖,𝑐 denotes the round 1 Best
estimate from individual 𝑖 for claim 𝑐.

Weighting Expert Forecasting Performance

Equal-weighting of judgements are less calibrated, accurate and informative than weighted
aggregation methods where judgements from experts who performed well in similar judgement
tasks are more heavily weighted (Hanea et al. 2021). Proxies for forecasting performance, such
as breadth and variability of qualitative reasons used by experts to justify their judgements,
can be used to form weights in the absence of measures of experts’ prior performance (Hanea
et al. 2021).

The aggregation methods other than the mean, median and Bayesian approaches in aggreCAT
each employ weighting schemes that are informed by proxies for good forecasting performance
whereby experts’ estimates are weighted differently by measures of reasoning, engagement,
openness to changing their mind in light of new facts, evidence or opinions presented in the
discussion round, extremity of estimates, informativeness of estimates, asymmetry of estimate
bounds, granularity of estimates, and by prior statistical knowledge as measured in a quiz.

Below, we define standardised notation for describing weighted linear combinations of indi-
vidual judgements where un-normalised weights are denoted by 𝑤_𝑚𝑒𝑡ℎ𝑜𝑑 and normalised
weights by �̃�_𝑚𝑒𝑡ℎ𝑜𝑑 (Equation 1). All weights must sum to one (be normalised), and
that process is the same for all aggregation methods, thus the equations for the aggregation
measures are presented for un-normalised weights.

̂𝑝𝑐 (𝑀𝑒𝑡ℎ𝑜𝑑𝐼𝐷) = 1
𝑁

𝑁
∑
𝑖=1

�̃�_𝑚𝑒𝑡ℎ𝑜𝑑𝑖,𝑐𝐵𝑖,𝑐 (1)
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By default, weights are calculated across all claims on a per-individual, per-claim basis, such
that judgements for the same individual are weighted differently across all claims they have
provided judgements for. There are some exceptions to this default: GranWAgg, QuizWAgg,
IndIntWAgg IndIntAsymWAgg, VarIndIntWAgg, KitchSinkWAgg. Note that IndIntWAgg, and
methods that include its weighting function weight_nIndivInterval() as a component, re-
scale weights by a fixed measure across all claims. Hence, for aggregation methods that
use information from multiple claims other than the target claim for which the Confidence
Score is being computed, each individual claim 𝑐 is indexed by 𝑑 = 1, ..., 𝐶. Where the
default weighting is used, this is coded into each function. However, where more complex
and method-specific weighting methods are used, modularised functions have been created
for ease of debugging. These function names are prefixed with weight_.

3.1. Package datasets

The aggreCAT package includes the core dataset data_ratings consisting of judgements
elicited during a pilot experiment exploring the performance of IDEA groups in assessing
replicability of a set of claims with “known outcomes.” “Known-outcome” claims are SBS
research claims that have been subject to replication studies in previous large-scale replication
projects1. Data were collected using the repliCATS IDEA protocol at a two day workshop2

in the Netherlands, on July 2019, at which 25 participants assessed the replicability of 25
1Many labs 1, 2 and 3 Klein, Ratliff, Vianello, Adams Jr., Bahnic, Bernstein, Bocian, Brandt, Brooks,

Brumbaugh, Cermalcilar, Chandler, Cheong, Davis, Devos, Eisner, Frankowska, Furrow, Galiani, Hasselman,
Hicks, Hovermale, Hunt, Huntsinger, IJzerman, John, Joy-Gaba, Barry Kappes, Kreuger, Kurtz, Levitan, Mal-
let, Morris, Nelson, Nier, Packard, Pilati, Rutchick, Schmidt, Skorinko, Smith, Steiner, Storbeck, Van Swol,
Thompson, van ’t Veer, Vaughn, Vranka, Wichman, Woodzicka, and Nosek (2014), Klein, Vianello, Hasselman,
Adams, Reginald B. Adams, Alper, Aveyard, Axt, Babalola, Štěpán Bahník, Batra, Berkics, Bernstein, Berry,
Bialobrzeska, Binan, Bocian, Brandt, Busching, Rédei, Cai, Cambier, Cantarero, Carmichael, Ceric, Chan-
dler, Chang, Chatard, Chen, Cheong, Cicero, Coen, Coleman, Collisson, Conway, Corker, Curran, Cushman,
Dagona, Dalgar, Rosa, Davis, de Bruijn, Schutter, Devos, de Vries, Doğulu, Dozo, Dukes, Dunham, Durrheim,
Ebersole, Edlund, Eller, English, Finck, Frankowska, Ángel Freyre, Friedman, Galliani, Gandi, Ghoshal,
Giessner, Gill, Gnambs, Ángel Gómez, González, Graham, Grahe, Grahek, Green, Hai, Haigh, Haines, Hall,
Heffernan, Hicks, Houdek, Huntsinger, Huynh, IJzerman, Inbar, Åse H. Innes-Ker, Jiménez-Leal, John, Joy-
Gaba, Kamiloğlu, Kappes, Karabati, Karick, Keller, Kende, Kervyn, Knežević, Kovacs, Krueger, Kurapov,
Kurtz, Lakens, Lazarević, Levitan, Neil A. Lewis, Lins, Lipsey, Losee, Maassen, Maitner, Malingumu, Mallett,
Marotta, Međedović, Mena-Pacheco, Milfont, Morris, Murphy, Myachykov, Neave, Neijenhuijs, Nelson, Neto,
Nichols, Ocampo, O’Donnell, Oikawa, Oikawa, Ong, Orosz, Osowiecka, Packard, Pérez-Sánchez, Petrović,
Pilati, Pinter, Podesta, Pogge, Pollmann, Rutchick, Saavedra, Saeri, Salomon, Schmidt, Schönbrodt, Sekerdej,
Sirlopú, Skorinko, Smith, Smith-Castro, Smolders, Sobkow, Sowden, Spachtholz, Srivastava, Steiner, Stouten,
Street, Sundfelt, Szeto, Szumowska, Tang, Tanzer, Tear, Theriault, Thomae, Torres, Traczyk, Tybur, Ujhelyi,
van Aert, van Assen, van der Hulst, van Lange, van ’t Veer, Vásquez-Echeverría, Vaughn, Vázquez, Vega,
Verniers, Verschoor, Voermans, Vranka, Welch, Wichman, Williams, Wood, Woodzicka, Wronska, Young, Ze-
lenski, Zhijia, and Nosek (2018), Ebersole, Atherton, Belanger, Skulborstad, Allen, Banks, Baranski, Bernstein,
Bonfiglio, Boucher, Brown, Budiman, Cairo, Capaldi, Chartier, Chung, Cicero, Coleman, Conway, Davis, De-
vos, Fletcher, German, Grahe, Hermann, Hicks, Honeycutt, Humphrey, Janus, Johnson, Joy-Gaba, Juzeler,
Keres, Kinney, Kirshenbaum, Klein, Lucas, Lustgraaf, Martin, Menon, Metzger, Moloney, Morse, Prislin,
Razza, Re, Rule, Sacco, Sauerberger, Shrider, Shultz, Siemsen, Sobocko, Weylin Sternglanz, Summerville,
Tskhay, van Allen, Vaughn, Walker, Weinberg, Wilson, Wirth, Wortman, and Nosek (2016), the Social Sci-
ences Replication Project Camerer, Dreber, Holzmeister, Ho, Huber, Johannesson, Kirchler, Nave, Nosek,
Pfeiffer, Altmejd, Buttrick, Chan, Chen, Forsell, Gampa, Heikensten, Hummer, Taisuke, Isaksson, Manfredi,
Rose, Wagenmakers, and Wu (2018) and the Reproducibility Project Psychology aac (2015).

2See Hanea et al. (2021) for details. The workshop was held at the annual meeting of the Society for the
Improvement of Psychological Science (SIPS), <https://osf.io/ndzpt/>.

https://osf.io/ndzpt/
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unique SBS claims. In addition to the probabilistic estimates provided for each research claim
assessed, participants were also asked to rate the claim’s plausibility and comprehensibility,
answer whether they were involved in any aspect of the original study, and to provide their
reasoning in support of their quantitative estimates, which were used to form measures of
reasoning breadth and engagement (Fraser et al. 2021).

data_ratings is a tidy dataframe wherein each observation (or row) corresponds to a sin-
gle value in the set of values constituting a participant’s complete assessment of a research
claim. Each research claim is assigned a unique paper_id, and each participant has a unique
(and anonymous) user_name. The variable round denotes the round in which each value
was elicited (round_1 or round_2). question denotes the type of question the value per-
tains to; direct_replication for probabilistic judgements about the replicability of the
claim, belief_binary for participants’ belief in the plausibility of the claim, comprehension
for participants’ comprehensibility ratings, and involved_binary for involvement in the
original study. An additional column element maintains the tidy structure of the data,
while capturing the multiple values that comprise a full assessment of the replicability
(direct_replication) of a claim; three_point_best, three_point_lower and three_-
point_upper denote the best estimate and lower and upper bounds respectively. binary_-
question describes the element for both the plausibility rating (belief_binary) and in-
volvement (involved_binary) questions, whereas likert_binary is the element describing
a participant’s comprehension rating. judgements are recorded in column value in the form
of percentage probabilities ranging from (0,100). The binary_questions corresponding to
comprehensibility and involvement consist of binary values (1 for the affirmative, and -1 for
the negative). Finally, values corresponding to participants’ comprehension ratings are on a
likert_binary scale from 1 through 7. Below we show some example data for a single user
for a single claim to illustrate this structure of the core data_ratings dataset.

R> library(tidyverse,quietly = TRUE)
R> library(aggreCAT)
R> data(data_ratings)
R> data_ratings %>%
+ dplyr::filter(paper_id == dplyr::first(paper_id),
+ user_name == dplyr::first(user_name)) %>%
+ print(., n = nrow(.))

# A tibble: 11 x 7
round paper_id user_name question element value group
<chr> <chr> <chr> <chr> <chr> <dbl> <chr>

1 round_1 100 fx3d4tmdhh direct_replication three_p~ 30 UOM1
2 round_1 100 fx3d4tmdhh involved_binary binary_~ -1 UOM1
3 round_1 100 fx3d4tmdhh belief_binary binary_~ -1 UOM1
4 round_1 100 fx3d4tmdhh direct_replication three_p~ 40 UOM1
5 round_1 100 fx3d4tmdhh direct_replication three_p~ 45 UOM1
6 round_1 100 fx3d4tmdhh comprehension likert_~ 5 UOM1
7 round_2 100 fx3d4tmdhh comprehension likert_~ 4 UOM1
8 round_2 100 fx3d4tmdhh belief_binary binary_~ -1 UOM1
9 round_2 100 fx3d4tmdhh direct_replication three_p~ 30 UOM1
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10 round_2 100 fx3d4tmdhh direct_replication three_p~ 45 UOM1
11 round_2 100 fx3d4tmdhh direct_replication three_p~ 39 UOM1

Not all data necessary for constructing weights on performance is contained in data_ratings.
Additional data collected as part of the repliCATS IDEA protocol are contained within sep-
arate datasets to data_ratings. On the repliCATS platform users were given the option
to comment on others’ justifications (data_comments), to vote on others’ comments (data_-
comment_ratings) and on others’ justifications (data_justification_ratings). Justifica-
tions for giving particular judgements are contained in data_justifications. Finally, ag-
greCAT contains three ‘supplementary’ datasets containing data collected externally to the
repliCATS IDEA protocol: data_supp_quiz, data_supp_priors, and data_supp_reasons.

Quiz Score Data

Prior to the workshop, participants also completed an optional quiz on statistical concepts
and meta-research that we expect participants to be aware of in order to reliably evaluate
the replicability of research claims. Quiz responses are contained in data_supp_quiz and
are used to construct performance weights for the aggregation method QuizWAgg where each
participant receives a quiz_score from 0 - X (TODO) if they completed the quiz, and
NA if they did not attempt or fully complete the quiz (see Hanea et al. 2021, for further
details). (Question for Bonnie, possibly Rose?: Pretty sure they get points for any question
they completed, even if they didn’t finish)

Reasoning Data

ReasonWAgg uses the number of unique reasons given by participants to support a Best Es-
timate for a given claim 𝐵𝑖,𝑐 to construct performance weights, and is contained within
data_supp_reasons. Qualitative statements made by individuals during claim evaluation
were recorded on the repliCATS platform (Pearson et al. 2021) and coded as falling into one
of 25 unique reasoning categories by the repliCATS Reasoning team (Wintle, Mody, Smith,
Hanea, Wilkinson, Hemming, Bush, Fraser, Singleton Thorn, McBride, Gould, Head, Hamil-
ton, Rumpff, Hoekstra, and Fidler 2021). Reasoning categories include plausibility of the
claim, effect size, sample size, presence of a power analysis, transparency of reporting, and
journal reporting (Hanea et al. 2021). Within data_supp_reasons, each of the 25 categories
of reasoning are distributed as columns in the dataset, and for each claim paper_id, each
participant user_id is assigned a logical 1 or 0 if they included that reasoning category in
support of their Best estimate for that claim. See Section 4.4 for details on the ReasonWAgg
aggregation method.

Bayesian Prior Data

The method BayPRIORsAgg uses Bayesian updating to update a prior probability of a claim
replicating estimated from a predictive model (Gould, Willcox, Fraser, Singleton Thorn, and
Wilkinson 2021) using an aggregate of the best estimates for all participants assessing a
given claim 𝑐 (Hanea et al. 2021). The prior data is contained in data_supp_priors with
each claim in column paper_id being assigned a prior probability (on the logit scale) of the
claim replicating in column prior_means. (TODO should explain further about the mean
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/ median of the distribution, ie internal workings of BayPRIORsAgg??) Also, I notice that
in our description / preregistration of BayPRIORsAgg we have said we will use the median,
but we actually use the mean

Aggregation Wrapper Functions

Although there are n aggregation methods in total, we grouped methods based on their mathe-
matical properties into eight ‘wrapper’ functions, denoted by the suffix WAgg, the abbreviation
of weighted aggregation: LinearWAgg(), AverageWAgg(), BayesianWAgg(), IntervalWAgg(),
ShiftingWAgg(), ReasoningWAgg(), DistributionWAgg(), and ExtremisationWAgg().
The specific aggregation method is applied according to the type argument, whose options
are described in each aggregation wrapper functions’ help page.

3.2. ‘Tidy’ Aggregation and Prescribed Inputs

The design philosophy of aggreCAT is principled on ‘tidy’ data (Wickham 2014). Each
aggregation method expects a dataframe or ‘tibble’ of judgements (data_ratings) as its
input, and returns a ‘tibble’ consisting of the variables method, paper_id, cs and n_experts
(see Section 4.1 for illustration of outputs); where method is a character vector corresponding
to the aggregation method name specified in the type argument. Each aggregation is applied
as a summary function (Wickham and Grolemund 2017b), and therefore returns a single row
or observation with a single confidence score cs for each claim or paper_id. The number of
expert judgements summarised in the aggregated confidence score is returned in the column
n_experts. Because of the tidy nature of the aggregation outputs, multiple aggregations can
be applied to the same data with the results of all aggregation methods row bound together
in a single tibble.

Each aggregation function requires values derived from three-point elicitation (best-estimate,
upper and lower bound). For every aggregation function, the three-point elicitation values cor-
responding to the "direct_replication" question are required inputs. Of the question and
elements other than the three-point elicitation elements belonging to the direct replication
question, only the comprehension question with the likert_binary elements is required
– this is an input into CompWAgg, which is used to weight participants judgements. Each
value provided by a participant is timestamped by the repliCATS elicitation platform, but
this is not a required data field for applying aggregation functions.

4. Focal Claim Aggregation

We now demonstrate how judgements elicited from a diverse group of individuals may be
mathematically aggregated for a single forecasting problem, using the datasets provided by
aggreCAT. We illustrate the internal mechanics of the weighting methods and the different
data requirements of each of the different types of aggregators – namely; methods with non-
weighted linear combinations of judgements, weighted linear combinations of judgements, re-
scaled weighted linear combinations of judgements, methods that require supplementary data,
and methods that require data elicited from the full IDEA protocol. Each group of methods
differs in the type of judgements elicited (single- or three-point estimates), the number of
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elicitation rounds (one or two rounds), whether multiple forecasts / elicited judgements are
used during confidence score computation for a target forecast / claim, and finally whether
supplementary data is required for aggregation.

Here we demonstrate the application of aggregation methods for each group of methods using
a set of ‘focal claims’ selected from the pilot study dataset supplied with the aggreCAT
package. Below we subset the dataset data_ratings to include a sample of five claims with
judgements from five randomly-sampled participants. From these focal claims, we select a
target claim czttvy for which we will apply an exemplar aggregation method from each
mathematical aggregator (Table 1 ).

R> set.seed(1234)
R> focal_claims <- data_ratings %>%
+ dplyr::filter(paper_id %in% c("24", "138", "186", "108"))
R> # select 5 users to highlight in focal claim demonstration
R> focal_users <- focal_claims %>%
+ dplyr::distinct(user_name) %>%
+ dplyr::slice_sample(n=5) %>%
+ dplyr::mutate(participant_name = paste("participant", rep(1:n())))
R> # filter out non-focal users from focal claims
R> focal_claims <- focal_claims %>%
+ dplyr::right_join(focal_users, by = "user_name") %>%
+ dplyr::select(-user_name) %>%
+ dplyr::rename(user_name = participant_name)
R> focal_claims

# A tibble: 220 x 7
round paper_id question element value group user_~1
<chr> <chr> <chr> <chr> <dbl> <chr> <chr>

1 round_1 108 comprehension likert_bin~ 7 UOM1 partic~
2 round_1 108 direct_replication three_poin~ 90 UOM1 partic~
3 round_1 108 direct_replication three_poin~ 40 UOM1 partic~
4 round_1 108 belief_binary binary_que~ 1 UOM1 partic~
5 round_1 108 involved_binary binary_que~ -1 UOM1 partic~
6 round_1 108 direct_replication three_poin~ 65 UOM1 partic~
7 round_1 108 direct_replication three_poin~ 60 UOM3 partic~
8 round_1 108 direct_replication three_poin~ 40 UOM3 partic~
9 round_1 108 direct_replication three_poin~ 51 UOM3 partic~
10 round_1 108 comprehension likert_bin~ 6 UOM3 partic~
# ... with 210 more rows, and abbreviated variable name 1: user_name

Claim ID User Name Lower Bound Best Estimate Upper Bound
108 participant 1 70 85 90
108 participant 2 70 80 90
108 participant 3 40 65 90
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108 participant 4 60 80 90
108 participant 5 50 60 70

Table 1: Focal Claim Data: Round 2 expert judgements for claim 108 derived from a subset
of 5 claims and 5 participants from data ratings. Judgements are displayed as percentages.

4.1. Non-weighted linear combination of judgements

We first demonstrate the mechanics of mathematical aggregation and its implementation
using the aggreCAT package with the simplest, unweighted aggregation method, ArMean.
All other aggregation methods take this underlying computational blueprint, and expand on
it according to the aggregation methods’ requirements (See Box 1 for details). ArMean (
Equation 2 ) takes the unweighted linear average (i.e. arithmetic mean) of the best estimates,
𝐵𝑖,𝑐.

̂𝑝𝑐 (𝐴𝑟𝑀𝑒𝑎𝑛) = 1
𝑁

𝑁
∑
𝑖=1

𝐵𝑖,𝑐 (2)

Below we demonstrate the application of ArMean on a single claim czttvy for a subset of
participants who assessed this claim. We also illustrate this aggregation visually in Figure 2.
ArMean is applied using the aggregation method AverageWAgg(), which is a wrapper function
for several aggregation methods that calculate different types of averaged best-estimates (see
?AverageWAgg). The function returns the Confidence Score for the claim in the form of a
‘tibble’:

R> focal_claims %>%
+ dplyr::filter(paper_id == "108") %>%
+ AverageWAgg(type = "ArMean")

# A tibble: 1 x 4
method paper_id cs n_experts
<chr> <chr> <dbl> <int>

1 ArMean 108 74 5

Box 1: Aggregation Workflow Blueprint

Argument Structure and Expected Form
Each aggregation wrapper function takes the following arguments: expert_judgements,
type, name, placeholder and percent_toggle:

R> args(AverageWAgg)

function (expert_judgements, type = "ArMean", name = NULL, placeholder = FALSE,



Journal of Statistical Software 13

Figure 2: ArMean with AverageWAgg() uses the Estimates (shown in colour) from each
participant to compute the mean. We illustrate this using a single claim zttvyg for a subset
of 5 out of 25 participants from the data_ratings dataset. Note that the data representations
in this figure are for explanatory purposes only, the data in the actual aggregation is tidy,
with long form structure and format.

percent_toggle = FALSE)
NULL

The aggregation method to be applied by the aggregation function, is specified by the
type argument, defaulting to ArMean in the above example. The resultant tibble of
Confidence Scores includes the name of the aggregation method applied, defaulting to
the type argument, but this can be overridden by the user if they supply a non-NULL
value to name.
Aggregation functions expect the judgements supplied in expert_judgements to be per-
centage chances. However, oftentimes analysts may wish to elicit probabilities, counts, or
other numeric quantities. By setting percent_toggle to TRUE, the user can turn toggle
the expectation of percentage values off, providing non-percentage numeric judgements..
When working with regularly updated data and developing a reproducible pipeline
(Yenni, Christensen, Bledsoe, Supp, Diaz, White, and Ernest 2019) , it can be use-
ful to put aggregation methods into ‘placeholder’ mode, whereby a placeholder value is
returned by he aggregation function instead of computing a Confidence Score using the
aggregation method. By setting placeholder to TRUE, the user can supply a placeholder
Confidence Score, which defaults to 65%, the average replicability of SBS research (cita-
tion? Fiona/David?). Should the user wish to set an alternative value, they can create
a modified version of method_placeholder() for themselves and store this within the
global environment. This function will then be called by the aggregation method when
the placeholder argument is set to TRUE.
Some functions expect additional arguments, especially those that rely on additional or
supplementary data. See the man pages for details of additional arguments.

Mathematical Aggregation Computational Workflow Blueprint
Each aggregation function follows a general computational workflow ‘blueprint’ whereby
the primary dataset data_ratings, parsed to the expert_judgements argument, is
first pre-processed by pre_process_judgements(), weights are computed if applicable,
subsequently the aggregation method is applied using dplyr::summarise(), and then
finally the aggregated data is parsed to postprocess_judgements().
The preprocess_judgements() function parses the primary dataset data_ratings
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through the argument expert_judgements to filter the required quantitative inputs for
the aggregation method at hand. It uses two filtering arguments to control which round
of judgements are used as inputs (round_2_filter), and whether the full set of three-
point elicitation judgements should be used, or whether other additional elements must
be returned (three_point_filter), including the likert_binary elements for partici-
pants’ comprehensibility ratings, and the plausibility ratings under binary_question in
column element. three_point_filter defaults to TRUE to provide only direct replica-
tion questions and associated values. Nearly all aggregation functions use only the round
2 judgements, so the round_2_filter defaults to TRUE (See Table 5 for required inputs
of all aggregation methods). preprocess_judgements() further pre-processes the data
to remove missing data, and to return the data into an appropriate structure for calcu-
lating weights and applying the aggregation function with dplyr::summarise().

R> data_ratings %>%
+ dplyr::group_by(paper_id) %>%
+ tidyr::nest() %>%
+ dplyr::ungroup() %>%
+ dplyr::slice_sample(n = 1) %>%
+ tidyr::unnest(cols = c(data)) %>%
+ preprocess_judgements()

-- Pre-Processing Options --

i Round Filter: TRUE

i Three Point Filter: TRUE

i Percent Toggle: FALSE

# A tibble: 75 x 5
round paper_id user_name element value
<chr> <chr> <chr> <chr> <dbl>

1 round_2 118 fx3d4tmdhh three_point_best 50
2 round_2 118 fx3d4tmdhh three_point_upper 60
3 round_2 118 fx3d4tmdhh three_point_lower 40
4 round_2 118 sv2yl8jszy three_point_best 45
5 round_2 118 sv2yl8jszy three_point_upper 70
6 round_2 118 sv2yl8jszy three_point_lower 30
7 round_2 118 v6n605nzv1 three_point_best 50
8 round_2 118 v6n605nzv1 three_point_lower 40
9 round_2 118 v6n605nzv1 three_point_upper 60
10 round_2 118 033t8xcqan three_point_best 64
# ... with 65 more rows



Journal of Statistical Software 15

The preprocess_judgements() function is exposed to the user to allow for data for-
matting in preparation for plotting, e.g. with ggplot2 (Wickham 2016), or for developing
bespoke aggregation functions / methods not supplied in aggreCAT.
For some aggregation methods, weights are necessary, and thus are computed prior to
aggregation. Some aggregation methods compute weights using separate weighting func-
tions (See Table 5), however, for aggregation methods with simpler weight computations,
these are defined in-function, rather than being modularised.
After application of preprocess_judgements(), weights are constructed, and the ag-
gregation method is applied, the function post_process_judgements() then processes
the variables into the final data frame that is returned by each aggregation function.
The post processing function returns a ‘tibble’ consisting of observations equal to the
number of unique claims that were parsed to post_process_judgements(), the method,
associated method_id , paper_id , the Confidence Score cs, as well as the number of
participants n_experts whose assessments were used in the aggregation, and the date of
the first and last assessments first_expert_date and last_expert_date respectively.
(David/AAron to check - are we still doing method_id)??

4.2. Weighted linear combinations of judgements

We now demonstrate the construction of weights for forecasting performance, as well as the
use of uncertainty bounds in addition to the Best Estimates (i.e. three-point estimates) in
the aggregation computation. The aggregation method IntWAgg weights each participant’s
best estimate 𝐵𝑖,𝑐 by the width of their uncertainty intervals, i.e. the difference between an
individual’s upper 𝑈𝑖,𝑐 and lower bounds 𝐿𝑖,𝑐. For a given claim 𝑐, a vector of weights for all
individuals is calculated from their upper and lower estimates using the weighting function,
weight_interval(), which calculates the interval width for each individual’s estimate for the
target claim. The weights are then normalised across the claim (by dividing each weight by the
sum of all weights per claim). Normalised weights are then multiplied by the corresponding
individual’s best estimates 𝐵𝑖,𝑐 andsummed together into a single Confidence Score (Figure 3
).

4.3. Re-scaled weighted linear combinations of judgements

Individuals vary in the interval widths they give across different claims. IndIntWAgg is a vari-
ation on IntWAgg that accounts for cross-claim variation within individuals’ assessments by
rescaling the interval width weights for individual 𝑖 for claim 𝑐 relative to the widest interval
provided by that individual across all claims 𝐶, (Equation 4). For the target claim, each in-
dividual’s interval width is divided by the maximum interval width that same individual gave
across all claims they have provided judgements for, using the weighting function weight_-
nIndivInterval() (Equation 3). The process of re-scaling is illustrated in Figure 3. Other
aggregation methods that re-scale weights by using data from multiple claims other than the
target claim under aggregation are VarIndIntWAgg, IndIntAsymWAgg, KitchSinkWAgg (ap-
plied with the wrapper function IntervalWAgg()) and GranWAgg (applied with the wrapper
function LinearWAgg()), see Table 5.



16 aggreCAT: an R Package for Mathematically Aggregating Expert judgements

𝑤_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖,𝑐 = 1
𝑈𝑖,𝑐 − 𝐿𝑖,𝑐

(3)

̂𝑝𝑐 (𝐼𝑛𝑡𝑊𝐴𝑔𝑔) =
𝑁

∑
𝑖=1

�̃�_𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑖,𝑐𝐵𝑖,𝑐 (4)
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Figure 3: Example applications of mathematical aggregation methods a) IntWAgg and b) IndIntWAgg using the wrapper function a1)
IntWAgg uses participants’ upper and lower bounds to construct performance weights. b2) This weighting computation is modified in
IndIntWAgg whereby the weights for each individual are re-scaled by the largest interval width across all claims for a given individual.
We exemplify this rescaling process by illustrating the calculation of participant 1’s maximum interval width across all claims they
assessed in the demonstration dataset focal_claims. This is repeated for every individual who has assessed the target claim under
aggregation.
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As for AverageWAgg(), we supply the aggregation method names as a character vector to
the type, but in this instance we do so via the purrr function map_dfr(), which row-binds
the results of each application of IntervalWAgg() into a single ‘tibble’ with the resultant
Confidence Scores:

R> focal_claims %>%
+ purrr::map_dfr(.x = c("IndIntWAgg", "IntWAgg"),
+ .f = ~ aggreCAT::IntervalWAgg(expert_judgements = focal_claims %>%
+ dplyr::filter(paper_id == "108"),
+ type = .x)
+ )

# A tibble: 2 x 4
method paper_id cs n_experts
<chr> <chr> <dbl> <int>

1 IndIntWAgg 108 74 5
2 IntWAgg 108 74.8 5

4.4. Aggregation Methods Requiring Supplementary Data

In addition to the three-point elicitation dataset data_ratings, Some aggregation meth-
ods require supplementary data inputs collected externally to the repliCATS IDEA protocol.
Each aggregation wrapper function that requires supplementary data expects this data to be
provided as a ‘data.frame’ or ‘tibble’ in addition to the main judgements that are provided
to the expert_judements argument. Aggregation methods requiring supplementary data, in-
clude ReasonWAgg and ReasonWAgg2 (applied with ReasoningWAgg()), QuizWAgg applied with
TODO: what wrapper function?? and BayPRIORsAgg (applied with BayesianWAgg()).
Finally, EngWAgg requires data summarised forms of data collected by the repliCATS IDEA
protocol, but not contained in data_ratings, see Table 5 for details.

We illustrate the usage and internal mechanics of this type of aggregation with the method
ReasonWAgg, which weights participants’ best estimates 𝐵𝑖,𝑐 by the breadth of reasoning pro-
vided to support the individuals’ estimate (Equation 5). This method is premised on the
expectation that multiple (unique) reasons justifying an individual’s judgement may indicate
their breadth of thinking, understanding and knowledge about both the claim and its context
(Hanea et al. 2021) while also reflecting their level of engagement and general conscientious-
ness. These qualities are correlated with improved forecasting (Wintle et al. 2021). Thus,
greater weighting of best estimates that are accompanied by a greater number of supporting
reasons may yield more reliable Confidence Scores.

̂𝑝𝑐 (𝑅𝑒𝑎𝑠𝑜𝑛𝑊𝐴𝑔𝑔) =
𝑁

∑
𝑖=1

�̃�_𝑟𝑒𝑎𝑠𝑜𝑛𝑖,𝑐𝐵𝑖,𝑐 (5)

ReasonWAgg is applied with the wrapper function ReasoningWAgg(), which uses the the
coded reasoning data data_supp_reasons (Section 3.1.2) to compute a vector of weights,
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𝑤_𝑟𝑒𝑎𝑠𝑜𝑛𝑖,𝑐 , the number of unique reasons provided by individual 𝑖 in support of their
estimate for claim 𝑐 (Figure 4). Weights are then normalised across individuals, multiplied
by the Best Estimates for that claim 𝐵𝑖,𝑐 and weighted best estimates are then summed to
generate the Confidence Score (Equation 5 ).

Figure 4: Illustration of the ReasonWAgg aggregation method for a subset of five par-
ticipants who assessed claim 09xkh8. ReasonWAgg is applied using the wrapper func-
tion ReasoningWAgg() and exemplifies aggregation methods that use supplementary data
(data supp ReasonWAgg) collected externally to the IDEA protocol in the construction of
weights and subsequent calculation of Confidence Scores. Weights are constructed by taking
the sum of the number of unique reasons made in support of quantitative estimates for each
participant, for the target claim.

The focal claim selected for aggregation using ReasonWAgg is 09xkh8, the round two three-
point estimates from the five focal participants for this claim are shown in Table 2. We
first prepare the supplementary data for aggregation data_supp_reasons, subsetting only
the participants contained in our focal_claims dataset. We also illustrate a subset of the
supplementary data for our 5 focal participants for the focal claim 09xkh8 (see ?data_supp_-
reasons for a description of variables):

R> data_supp_reasons_focal <- aggreCAT::data_supp_reasons %>%
+ dplyr::right_join(focal_users) %>%
+ dplyr::select(-user_name) %>%
+ dplyr::rename(user_name = participant_name)

Joining, by = "user_name"

R> data_supp_reasons_focal %>%
+ dplyr::filter( paper_id == 24) %>%
+ tidyr::pivot_longer(cols = c(-paper_id, -user_name)) %>%
+ dplyr::arrange(name) %>%
+ tidyr::separate(name, into = c("reason_num", "reason"), sep = "\\s", extra = "merge") %>%
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+ dplyr::select(-reason) %>%
+ dplyr::group_by(paper_id, user_name) %>%
+ tidyr::pivot_wider(names_from = reason_num) %>%
+ dplyr::arrange(user_name)

# A tibble: 5 x 15
# Groups: paper_id, user_name [5]

paper_id user_name RW05 RW09 RW11 RW12 RW13 RW14 RW15 RW16
<chr> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>

1 24 participan~ 0 0 1 0 0 0 1 1
2 24 participan~ 0 0 1 0 0 0 2 1
3 24 participan~ 0 0 0 0 0 1 0 0
4 24 participan~ 0 0 0 0 0 0 0 1
5 24 participan~ 0 0 0 0 0 0 0 0
# ... with 5 more variables: RW18 <dbl>, RW19 <dbl>, RW22 <dbl>,
# RW23 <dbl>, RW24 <dbl>

Claim ID User Name Lower Bound Best Estimate Upper Bound
24 participant 1 5 20 40
24 participant 2 5 11 17
24 participant 3 20 35 50
24 participant 4 10 15 20
24 participant 5 10 30 50

Table 2: Focal Claim 09xkh8 judgements comprising best estimates, upper and lower bounds
elicited from 5 participants. Judgements are displayed as percentages.

Confidence Scores estimating the replicability for claim 09xkh8 (Table 2) using the
ReasonWAgg method are computed using ReasoningWAgg() and by providing the supple-
mentary data to the reasons argument:

R> focal_claims %>%
+ dplyr::filter(paper_id == "24") %>%
+ aggreCAT::ReasoningWAgg(reasons = data_supp_reasons_focal,
+ type = "ReasonWAgg")

Note that if there are zero participants with a Reasoning Score > 0 or all participants are
missing a Reasoning Score, the log-odds transformed best estimate is returned instead (See
?AverageWAgg, type="LoArMean"). The user can choose to flag this behaviour explicitly by
setting the argument flag_loarmean to TRUE, which will generate new columns in the ag-
gregation output dataframe named method_applied (with values LoArMean or ReasonWAgg),
and no_reason_score, a logical variable describing whether or not there were no reasoning
scores for that claim.
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4.5. Bayesian Aggregation Methods

Both Bayesian methods BayTriVar and BayPRIORsAgg use the full three-point elicitation
data, i.e., they use information contained in the uncertainty bound provided by individuals
(upper 𝑈𝑖,𝑐 and lower bounds 𝐿𝑖,𝑐), in addition to Best Estimates, 𝐵𝑖,𝑐. Like IndIntWAgg
and other methods (Table 5), the Bayesian aggregation methods also construct weights from
information encoded in participant assessments of claims other than the target claim under
aggregation. In fact, the Bayesian methods require more than a single claim’s worth of data
to work properly execute due mathematical specification of the models (See ?BayesianWAgg
and below for details).

The two Bayesian methods use the elicited probabilities as data to update prior probabilities.
BayTriVar incorporates three sources of uncertainty in best estimates: variability in best es-
timates across all claims, variability in estimates across all individuals, and claim-participant
variability (which is derived from an individuals’ upper and lower bounds). This Bayesian
model, implemented using R2JAGS(Su and Yajima 2020), takes the log odds transformed
individual best estimates, and uses a normal likelihood function to derive a posterior distri-
bution for the probability of replication. The estimated confidence score is the mean of this
posterior distribution.

BayPRIORsAgg is a modified version of BayTriVar where, instead of using default priors, priors
are generated from a predictive model that estimates the probability of a claim replicating
based on characteristics of the claim and publication (Gould et al. 2021). Priors are parsed
as supplementary data to the wrapper function BayesianWAgg() using the argument priors
(Section 3.1.3 ) with each claim having its own unique prior.

We illustrate aggregation of participant judgements using the method BayTriVar to generate
a Confidence Score for the claim czttvy. Note that BayesianWAgg() expects best estimates
in the form of probabilities, so to convert elicited values in the form of percentages within the
data parsed to expert_judgements to probabilities, the logical value TRUE is supplied to the
argument percent_toggle (Box 1):

R> focal_claims %>%
+ BayesianWAgg(type = "BayTriVar",
+ percent_toggle = TRUE) %>%
+ dplyr::filter(paper_id == "108")

Compiling model graph
Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 20
Unobserved stochastic nodes: 4
Total graph size: 230

Initializing model

# A tibble: 1 x 4
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method paper_id cs n_experts
<chr> <chr> <dbl> <int>

1 BayTriVar 108 0.699 5

The Confidence Score calculated for a given claim depends on data for other claims and par-
ticipants included in the expert_judgements argument other than the target claim, because,
by definition, BayesianWAgg() calculates the Confidence Score for a target claim using data
from participants’ assessments of other claims, and from all other claims in the dataframe
parsed to the expert_judgements argument. Because information about other claims than the
target claim is used to calculate the Confidence Score for the target claim, what is included
in the data supplied to the argument expert_judgements in BayesianWAgg() will alter the
Confidence Score. Above, we calculated the Confidence Score for claim czttvy but including
information from 3 additional claims included in the focal_claims dataframe: 108, 138, 186,
24. However, if we were to supply assessments for only two claims to BayesianWAgg(), then
we would observe a different result for focal claim czttvy:

R> focal_claims %>%
+ dplyr::filter(paper_id %in% c("108", "138")) %>%
+ aggreCAT::BayesianWAgg(type = "BayTriVar", percent_toggle = TRUE) %>%
+ dplyr::filter(paper_id == "108")

Compiling model graph
Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 10
Unobserved stochastic nodes: 2
Total graph size: 116

Initializing model

# A tibble: 1 x 4
method paper_id cs n_experts
<chr> <chr> <dbl> <int>

1 BayTriVar 108 0.739 5

The Confidence Score shifts from 0.7 to 0.74. Note that BayesianWAgg() cannot calculate con-
fidence scores when judgements for only a single claim is provided to expert_judgements(),
because by definition the underlying Bayesian model calculates variance across multiple claims
and multiple participants:

R> focal_claims %>%
+ dplyr::filter(paper_id == "108") %>%
+ aggreCAT::BayesianWAgg(type = "BayTriVar", percent_toggle = TRUE)
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Error in `aggreCAT::BayesianWAgg()`:
! Model requires n > 1 ids to successfully execute.

Finally, all of the previous methods illustrated in this section have been used with data
generated using the IDEA elicitation protocol, however this elicitation method is not strictly
necessary for the of these methods. Methods that do require the full IDEA protocol for their
correct mathematical implementation, such as ShiftingWAgg(), which use two rounds of
three-point judgements in which the second round judgements are revised after discussion,
are listed in Table 5.

Figure 5: Illustration of BayTriVar applied with BayesianWAgg()for a single claim, paper_id
= 108 from the focal_claims data object.

5. An illustrative workflow for use in real study contexts

During phase one of the DARPA SCORE program, 509 participants assessed 3000 unique
claims using the repliCATS IDEA protocol. This required us to batch aggregation over mul-
tiple claims, and to generate Confidence Scores for multiple claims. We also applied multiple
aggregation methods to the same claim so that we could compare and evaluate the different
aggregation methods. We expect that these are not uncommon use-cases,consequently in this
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section we demonstrate a general workflow for using the aggreCAT package to aggregate ex-
pert judgements using pilot data from DARPA SCORE program generated by the repliCATS
project.

5.1. Generating multiple forecasts

During expert-elicitation the analyst or researcher may be tasked with generating multiple
forecasts for different problems or questions, and therefore it is useful to batch the aggre-
gation. Since the aggreCAT package is designed using the principles of tidy data analysis
(Wickham, Averick, Bryan, Chang, McGowan, François, Grolemund, Hayes, Henry, Hester,
Kuhn, Pedersen, Miller, Bache, Müller, Ooms, Robinson, Seidel, Spinu, Takahashi, Vaughan,
Wilke, Woo, and Yutani 2019), each aggregation function accepts a dataframe of raw three-
point forecasts for one or more claims, 𝐶, parsed to the argument expert_judgements. The
data pre-processing and aggregation methods are applied using a combination of calls to tidy-
verse functions, including summarise and mutate. From the user’s perspective, this means
that data processing and application of the aggergation methods is handled internally by the
aggreCAT package, rather than by the user. The user is therefore free to focus their attention
on the interpretation and analysis of the forecasts. Here we demonstrate the application of
the ArMean aggregation method to four focal claims simultaneously:

AverageWAgg(focal_claims, type = "ArMean")

# A tibble: 4 x 4
method paper_id cs n_experts
<chr> <chr> <dbl> <int>

1 ArMean 108 74 5
2 ArMean 138 68.6 5
3 ArMean 186 57.6 5
4 ArMean 24 22.2 5

5.2. Comparing and Evaluating Aggregation Methods

In real study contexts, such as that of the repliCATS project in the DARPA SCORE program,
it is of interest to compute Confidence Scores using multiple aggregation methods so that
their performance might be evaluated and compared. Since different methods offer different
mathematical properties, and therefore might be more or less appropriate depending on the
purpose of the aggregation and forecasting, a researcher or analyst might want to check how
the different assumptions embedded in different aggregation methods might influence the final
Confidence Scores for a forecast – i.e. how robust are the results to different methods and
therefore to different assumptions?

From a computational perspective, multiple aggregation methods must first be applied to the
forecast prior to comparison and evaluation. This can be implemented very succinctly using
purrr’s map_dfr() function (Henry and Wickham 2020) , which takes a list of aggregation
methods, repeatedly applies each method to the dataframe focal_claims, and row-binds the
resultant list of dataframes into a single dataframe, for example:



Journal of Statistical Software 25

R> list(
+ AverageWAgg,
+ IntervalWAgg,
+ IntervalWAgg,
+ ShiftingWAgg,
+ BayesianWAgg
+) %>%
+ purrr::map2_dfr(.y = list("ArMean",
+ "IndIntWAgg",
+ "IntWAgg",
+ "ShiftWAgg",
+ "BayTriVar"),
+ .f = ~ .x(focal_claims,
+ type = .y,
+ percent_toggle = TRUE)
+ )

Compiling model graph
Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 20
Unobserved stochastic nodes: 4
Total graph size: 230

Initializing model

# A tibble: 20 x 4
method paper_id cs n_experts
<chr> <chr> <dbl> <int>

1 ArMean 108 0.74 5
2 ArMean 138 0.686 5
3 ArMean 186 0.576 5
4 ArMean 24 0.222 5
5 IndIntWAgg 108 0.740 5
6 IndIntWAgg 138 0.685 5
7 IndIntWAgg 186 0.561 5
8 IndIntWAgg 24 0.19 5
9 IntWAgg 108 0.748 5
10 IntWAgg 138 0.694 5
11 IntWAgg 186 0.581 5
12 IntWAgg 24 0.181 5
13 ShiftWAgg 108 0.715 5
14 ShiftWAgg 138 0.706 5
15 ShiftWAgg 186 0.438 5
16 ShiftWAgg 24 0.209 5
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17 BayTriVar 108 0.699 5
18 BayTriVar 138 0.659 5
19 BayTriVar 186 0.528 5
20 BayTriVar 24 0.175 5

Given that aggregation methods IntWAgg and IndIntWAgg are both applied using the ag-
gregation wrapper function IntervalWAgg(), but by supplying their method names as a
character string to the type argument, we must supply a second list of character strings (the
same length as our list of wrapper functions) to the mapping function. We therefore use
purr::map2_dfr() instead of purr::map_dfr() because there are now multiple inputs that
must be iterated along in parallel (the list of functions and the corresponding aggregation
type) (Wickham and Grolemund 2017a).
Note that if we wish to batch aggregate claims using a combination of aggregation methods
that do and do not require supplementary data, we must aggregate them separately, since the
methods that require supplementary data have an additional argument for the supplemen-
tary data that must be parsed to the wrapper function call. We can chain the aggregation
of the methods that do not require supplementary data, and the methods that do require
supplementary data together very neatly using dplyr’s bind_rows() function (Wickham,
François, Henry, and Müller 2021) and the magrittr() pipe %\>% (Bache and Wickham
2020). Below we implement this approach while applying the aggregation methods ArMean,
IntWAgg, IndIntWAgg, ShiftWAgg and BayTriVar to the repliCATS pilot program dataset
data_ratings:

R> confidenceSCOREs <-
+ list(
+ AverageWAgg,
+ IntervalWAgg,
+ IntervalWAgg,
+ ShiftingWAgg,
+ BayesianWAgg
+ ) %>%
+ purrr::map2_dfr(
+ .y = list("ArMean",
+ "IndIntWAgg",
+ "IntWAgg",
+ "ShiftWAgg",
+ "BayTriVar"),
+ .f = ~ .x(aggreCAT::data_ratings, type = .y, percent_toggle = TRUE)
+ ) %>%
+ dplyr::bind_rows(
+ ReasoningWAgg(aggreCAT::data_ratings,
+ reasons = aggreCAT::data_supp_reasons,
+ percent_toggle = TRUE)
+ )

Compiling model graph
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Resolving undeclared variables
Allocating nodes

Graph information:
Observed stochastic nodes: 625
Unobserved stochastic nodes: 25
Total graph size: 5904

Initializing model

R> confidenceSCOREs

# A tibble: 150 x 4
method paper_id cs n_experts
<chr> <chr> <dbl> <int>

1 ArMean 100 0.706 25
2 ArMean 102 0.308 25
3 ArMean 103 0.625 25
4 ArMean 104 0.471 25
5 ArMean 106 0.365 25
6 ArMean 108 0.718 25
7 ArMean 109 0.725 25
8 ArMean 116 0.626 25
9 ArMean 118 0.548 25
10 ArMean 133 0.599 25
# ... with 140 more rows

After generating Confidence Scores using various aggregation methods, we then evaluate
the forecasts. We evaluated the repliCATS pilot study forecasts against the outcomes of
previous, high-powered replication studies (Hanea et al. 2021), which are contained in the
data_outcomes dataset published with aggreCAT. In this dataset, each claim paper_id is
assigned an outcome of 0 if the claim did not replicate and 1 if the claim was successfully
replicated:

R> aggreCAT::data_outcomes %>%
+ head()

# A tibble: 6 x 2
paper_id outcome
<chr> <dbl>

1 100 1
2 102 0
3 103 0
4 104 1
5 106 0
6 108 1
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The function confidence_score_evaluation() evaluates a set of aggregated forecasts or
Confidence Scores against a set of known or observed outcomes, returning the Area Under
the ROC Curve (AUC), the Brier score, and classification accuracy of each method (Table 3):

Method AUC Brier Score Classification Accuracy
ArMean 0.94 0.15 84%
BayTriVar 0.87 0.14 80%
IndIntWAgg 0.93 0.14 84%
IntWAgg 0.93 0.14 84%
ReasonWAgg 0.90 0.15 84%
ShiftWAgg 0.96 0.15 88%

Table 3: AUC and Classification Accuracy for the aggregation methods ‘ShiftWAgg’,
‘ArMean’, ‘IntWAgg’, ‘IndIntWAgg’, ‘ReasonWAgg’ and ‘BayTriVar’ evaluated for repliCATS
pilot study claims and known outcomes.

5.3. Visualising Judgements, Confidence Scores and Forecast Performance

We include two functions for visualising comparison and evaluation of Confidence Scores
across multiple aggregation methods for a suite of forecasts from multiple participants,
confidence_scores_ridgeplot() and confidencescore_heatmap(). confidence_-
scores_ridgeplot() generates ridgeline plots using ggridges Wilke (2021) , and displays the
distribution of predicted outcomes across a suite of forecasts for each aggregation method,
grouped into separate ‘mountain ranges’ according to the mathematical properties of the
aggregation method (Figure 6).

While confidencescore_heatmap() is useful for comparison of aggregation methods,
confidencescore_heatmap() is useful for visual comparative evaluation of aggregation
methods. confidencescore_heatmap() generates heatmaps of forecasted Confidence Scores
for each aggregation method included in the dataset provided to the argument confidence_-
scores organised with unique aggregation methods on the y-axis, and separate forecasts or
paper_ids along the y-axis (Figure 7). The heatmap is blocked vertically according to the
mathematical characteristics of each aggregation method, and horizontally into two groups,
according to the binary outcomes in data_outcomes.

Horizontal grouping facilitates quick and simple evaluation of the aggregation methods. Per-
fectly accurate aggregation methods show dark blue squares in the left heatmap blocks, where
the outcomes were 1 or TRUE, and dark red squares on the right heatmap blocks, where the
actual outcomes were 0 or FALSE. Deviation from this expectation indicates which aggrega-
tion methods for which claim/forecast, for which outcome type were inaccurate, and to what
degree.

For example, in Figure 7, for the example dataset confidenceSCOREs the successful replication
of most claims was accurately forecasted by most methods, except for several claims. Some
methods performed better than others for some claims (e.g. BayTriVar and IndIntWAgg for
the first claim on the left (TODO insert), and for the claim on the right). In contrast, for
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Figure 6: Ridgeline plots illustrating the distribution of aggregated Confidence Scores for the
tibble confidenceSCOREs, grouped according to mathematical properties of each method.
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Figure 7: Blocked heatmap visualisation of confidence scores is useful for visually comparing
aggregation methods and evaluating them against a set of known outcomes. In this example,
Confidence Scores generated by 6 aggregation methods for the repliCATS pilot study are
visualised for 25 claims. Claims where known outcomes succesfully replicated outcome ==
TRUE are presented in heatmap blocks on the left, and claims that failed to replicate are pre-
sented in heatmap blocks on the right. Confidence Scores generated by different aggregation
methods are positioned along the y-axis, with vertical groupings according to the methods’
mathematical properties. Colour and intensity of cells indicates the direction and degree of
deviation respectively of the Confidence Scores from the known outcomes.
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most claims that did not replicate, forecasts were inaccurate, with IndIntWAgg, IntWAgg and
BayTriVar performing particularly badly for the claims X and Y.

Finally, creating bespoke user-defined plots is relatively easy – because aggreCAT functions
return tidy dataframes, we can easily manipulate the raw judgements, aggregated Confidence
Scores and outcome data to plot them with ggplot2 (Wickham 2016) or other visualisation
package. Below we plot the aggregated Confidence Scores along with the three-point judge-
ments (subset using preprocess_judgements() on focal_claims, transforming judgements
in percentages to probabilities by setting percent_toggle to TRUE, Figure 8, Listing 1):

108 138 186 24

C
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licited P
robabilities

0.250.500.75 0.250.500.75 0.250.500.75 0.250.500.75
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BayTriVar
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participant 5

Probability of Replication

Figure 8: Confidence Scores for the aggregation methods ‘ArMean’, ‘BayTriVar’, ‘IntWAgg’,
‘IndIntWAgg’, ‘ReasonWAgg’ and ‘ShiftWAgg’ for four claims. Participants’ three-point best
estimates are displayed as black points, and their upper and lowr bounds displayed as black
error bars. Confidence Scores are displayed as points within the upper row of plots. Lines
are displayed vertically at the 0.5 probability mark, and their colour denotes the observed
outcome under previous large-scale replication projects.

5.4. Extending aggreCAT to other datasets

The aggregation methods supplied by the aggreCAT package can easily be applied to other
forecasting problems. The only requirements are that the data inputs adhere to the required
format (see Box 1), and that the expert judgements are elicited using the appropriate method,
as required by each aggregation method (see Table 5).

Judgement data provided to the expert_judgements, data_justifications or any sup-
plementary data inputs argument must contain the requisite column names, and be of the
correct data type, as described in each method’s documentation (see ?data_ratings, for ex-
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ample). At minimum the user must supply to expert_judgements: the round under which
each judgement is elicited, a unique ID for each different forecasting problem paper_id, a
unique user_name for each individual, and the element of the three point elicitation that the
recorded response or value in that row corresponds to. The data is stored in long or tidy
format such that each row or observation in the dataframe references only a single element
of a participants’ set of three point elicitation values. When applying aggregation methods
requiring supplementary data to the elicitation data, the analyst should also adhere to the
requirements stipulated for the relevant supplementary dataset described in the documenta-
tion.
Although several aggregation functions require judgements judgements are elicited using the
IDEA protocol, most aggregation methods require only a single round of elicitation that
generates a set of three points; a best estimate, and upper and lower bounds about those
estimates. Hence, the aggregation functions contained in the aggreCAT package are unsuit-
able for use with judgements derived using Delphi or other similar elicitation methods that
aggregate behaviourally (e.g. using consensus) and therefore result in a single forecast value.
Where the analyst elicits judgements for only a single round, the analyst should record the
round in the judgements data as the character string round_2, which is the default source of
estimates for aggregation methods where only a single round of data is required, but where
the IDEA protocol has been used to elicit judgements.
Should the analyst wish to create their own aggregation functions, pre- and post-
processing functions may be leveraged inside the functions (preprocess_judgements()
and postprocess_judgements(), respectively), as we have illustrated in data preparation
for Figure 8, Listing 1. These processing functions modularise key components of the
aggregation’s computational implementation - namely the data wrangling that occurs before
and after the actual mathematical aggregation.

Preparing your own Elicitation Data

We demonstrate how to prepare data for applying the aggreCAT aggregation methods with
data collected using the IDEA protocol for an environmental conservation problem (Arlidge,
Alfaro-Shigueto, Ibanez-Erquiaga, Mangel, Squires, and Milner-Gulland 2020) . Participants
were asked “How many green turtles in winter per month would be saved using a total gillnet
ban, with gear switching to lobster potting or hand line fishing required?”. We take the
required data for the expert_judgements argument from Table S51 of Arlidge et al. (2020),
make the data long instead of wide, and then add the required additional columns paper_id
and question:

R> green_turtles <-
+ dplyr::tribble(~user_name, ~round, ~three_point_lower,
+ ~three_point_upper, ~three_point_best,
+ "L01", 1, 10.00, 16.43, 10.00,
+ "L01", 2, 10.00, 16.43, 10.00,
+ "L02", 1, 500.00, 522.50, 500.00,
+ "L02", 2, 293.75, 406.25, 350.00,
+ "L03", 1, 400.00, 512.50, 400.00,
+ "L03", 2, 300.00, 356.25, 300.00,
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+ "L04", 1, 32.29, 65.10, 41.67,
+ "L04", 2, 32.29, 65.10, 41.67,
+ "L05", 1, 6.67, 7.74, 6.67,
+ "L05", 2, 6.67, 7.74, 6.67) %>%
+ dplyr::group_by(user_name) %>% # pivot longer
+ tidyr::pivot_longer(cols = tidyr::contains("three_point"),
+ names_to = "element", "value") %>%
+ dplyr::mutate(paper_id = 1,
+ round = ifelse(round ==1, "round_1", "round_2"),
+ question = "direct_replication")

We can then apply multiple aggregation methods, using the same approach implemented
for aggregation of the focal_claims dataset (Listing 2), with aggregated Confidence Scores
shown in Table 4. Note that because the judgements are absolute values rather than probabil-
ities, we set the percent_toggle argument for each aggregation wrapper function to FALSE:
(DAVID/AAron to check.. )

Method Question ID Confidence Score N (experts)
ArMean 1 141.67 5
IndIntWAgg 1 141.67 5
IntWAgg 1 15.26 5
ShiftWAgg 1 328.85 5

Table 4: Example aggregation of non-percentage / non-probabilistic estimates with several
aggregation methods using Green Turtle dataset (Arlidge et al. 2020).

6. Summary and Discussion

The aggreCAT package provides a diverse suite of methods for mathematically aggregating
judgements elicited from groups of experts using structured elicitation procedures, such as
the IDEA protocol. The aggreCAT package was developed by the repliCATS project as a
part of the DARPA SCORE program to implement the 28 aggregation methods described in
Hanea et al. (2021).
There are very few open-source tools available to the researcher wishing to mathematically
aggregate judgements. The aggreCAT package is therefore unique in both the diversity of
aggregation methods it contains, as well as in its computational approach to implementing the
aggregation methods. There is no other R or other software package with so many aggregation
methods, and methods that use proxies of forecasting accuracy using weights.
The aggreCAT package is production-ready for application to data elicited during either a
single workshop, or for production scenarios where continuous analysis is used and data col-
lection is ongoing. Unlike other aggregation packages, the aggreCAT package is designed to
work within the tidyverse. The package is premised on the principles of tidy data analysis
whereby the user supplies dataframes of elicited judgements, and the aggregation methods re-
turn dataframes of aggregated forecasts. The benefits of this approach are three-fold. Firstly,
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the work of data-wrangling and application of the aggregation methods is handled internally
by the aggregation methods, so that the researcher can focus on analysis and interpretation
of the aggregation outputs. This is critical in data-deficient contexts where rapid assessments
are needed, which is a common use-case for the use of expert derived forecasts. Secondly,
the aggreCAT package is easily paired with other tidyverse tools, such as purrr, dplyr, and
ggplot2, as exemplified through the repliCATS workflow described in Section 5.

Thirdly, application of the aggreCAT package aggregation methods and performance eval-
uation tools is scalable, which is evidenced by the application of the aggreCAT package to
forecast the replicability of over 3000 research claims by the repliCATS project during phase
1 of the SCORE program. The scalability, timestamp and placeholder functionality allow the
aggreCAT package to be built into production-ready pipelines for more complicated analyses
where there are multiple forecasts being elicited and aggregated, where there are numerous
participants, and where multiple aggregation methods are applied.

Finally, through the provision of built-in performance metrics, the analyst is able to ‘ground-
truth’ and evaluate the forecasts against known-outcomes, or alternative forecasting methods
(e.g. Arlidge et al. 2020).

The aggreCAT package is easily extensible and production-ready. Each aggregation func-
tion follows a consistent modular blueprint, wherein data-wrangling of the inputs and out-
puts of aggregation is largely handled by pre- and post-processing functions (preprocess_-
judgements() and postprocess_judgements(), respectively). This design expedites debug-
ging by making it easier to pinpoint the exact source of errors, while also permitting the user
to easily create their own custom aggregation methods.

Although the package currently requires data inputs to conform to nomenclature specific to
the repliCATS project, future releases of the aggreCAT package will relax the data-input
requirements so they are more domain-agnostic. We believe this to be a minimal barrier for
adoption and application of the aggreCAT package. Ecologists should be no stranger to these
naming conventions for data requirements, with packages like vegan also imposing strict
nomenclature (Oksanen, Blanchet, Friendly, Kindt, Legendre, McGlinn, Minchin, O’Hara,
Simpson, Solymos, Stevens, Szoecs, and Wagner 2020). We have illustrated how to extend
and apply the package to data from domains beyond forecasting the replicability of research
claims through our minimal example using forecasts generated using the IDEA protocol for
a fisheries and conservation problem.

The package will be actively maintained into the future, and we expect additional aggregation
methods to be added to the package during phase 2 of the DARPA SCORE program. Bug
reports and feature-requests can easily be lodged on the aggreCAT GitHub repository using
reproducible examples created with reprex (Bryan, Hester, Robinson, and Wickham 2021)
on the repliCATS pilot study datasets shipped with the aggreCAT package.

We have described the computational implementation of the aggregation methods and sup-
porting tools within the aggreCAT package, providing usage examples and workflows for both
simple and more complex research contexts. Consequently, this paper should fully equip the
analyst for applying the aggregation functions contained within the aggreCAT package to
their own data. Where the analyst is uncertain as to which aggregation method is best for
their particular research goals, the reader should consult Hanea et al. (2021) for a discus-
sion on the mathematical principles and hypotheses underlying the design of the aggregation
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methods, as well as a comparative performance evaluation of each of the methods. In conclu-
sion, the aggreCAT package will aid researchers and decision analysts in rapidly and easily
analysing the results of IDEA protocol and other structured elicitation procedures where
mathematical aggregation of human forecasts is required.
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Listing 1 Visualising Confidence Scores

plot_cs <-
confidenceSCOREs %>%
dplyr::left_join(aggreCAT::data_outcomes) %>%
dplyr::mutate(data_type = "Confidence Scores") %>%
dplyr::rename(x_vals = cs,

y_vals = method) %>%
dplyr::select(y_vals, paper_id, data_type, outcome, x_vals)

plot_judgements <-
aggreCAT::preprocess_judgements(focal_claims,

percent_toggle = TRUE) %>%
tidyr::pivot_wider(names_from = element,

values_from = value) %>%
dplyr::left_join(aggreCAT::data_outcomes) %>%
dplyr::rename(x_vals = three_point_best,

y_vals = user_name) %>%
dplyr::select(paper_id,

y_vals,
x_vals,
tidyr::contains("three_point"),
outcome) %>%

dplyr::mutate(data_type = "Elicited Probabilities")

p <- plot_judgements %>%
dplyr::bind_rows(., {dplyr::semi_join(plot_cs, plot_judgements,

by = "paper_id")}) %>%
ggplot2::ggplot(ggplot2::aes(x = x_vals, y = y_vals)) +
ggplot2::geom_pointrange(ggplot2::aes(xmin = three_point_lower,

xmax = three_point_upper)) +
ggplot2::facet_grid(data_type ~ paper_id, scales = "free_y") +
ggplot2::theme_classic() +
ggplot2::theme(legend.position = "none") +
ggplot2::geom_vline(aes(xintercept = 0.5, colour = as.logical(outcome))) +
ggplot2::xlab("Probability of Replication") +
ggplot2::ylab(ggplot2::element_blank()) +
ggplot2::scale_colour_brewer(palette = "Set1")
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Listing 2 Bring your own data: non-probablistic values

turtle_CS <-
list(
AverageWAgg,
IntervalWAgg,
IntervalWAgg,
ShiftingWAgg

) %>%
purrr::map2_dfr(.y = list("ArMean",

"IndIntWAgg",
"IntWAgg",
"ShiftWAgg"),

.f = ~ .x(green_turtles, type = .y,
percent_toggle = FALSE)

)
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Table 5: Summary of aggregation methods and functions, including data requirements and sources.

Method Description Data Requirements Weighting
Function

Elicitation
Rounds

Elicitation
Method

Data Sources

AverageWAgg(): Averaged best estimates
ArMean Arithmetic mean of the best

estimates
NA - Estimates
are equally
weighted

1 Single-Point 𝐵𝑖,𝑐

Median Median of the best estimates NA - Estimates
are equally
weighted

1 Single-Point 𝐵𝑖,𝑐

GeoMean Geometric mean of the best
estimates

NA - Estimates
are equally
weighted

1 Single-Point 𝐵𝑖,𝑐

LOArMean Arithmetic mean of the log odds
transformed best estimates

NA - Estimates
are equally
weighted prior to
transformation

1 Single-Point 𝐵𝑖,𝑐

ProbitArMean Arithmetic mean of the probit
transformed best estimates

NA - Estimates
are equally
weighted prior to
transformation

1 Single-Point 𝐵𝑖,𝑐

LinearWAgg() Linearly-weighted best estimates
DistLimitWAgg Weighted by the distance of the best

estimate from the closest certainty
limit. Best-estimates closest to
certainty limits are more strongly
weighted

Calculated
internally

1 Single-Point 𝐵𝑖,𝑐

GranWAgg Weighted by the granularity of best
estimates

Calculated
internally

1 Single-Point 𝐵𝑖,𝑐

Judgement Weighted by user-supplied weights at
the judgement level

??? ??? ??? ??? ???

Participant Weighted by user-supplied weights at
the participant level

??? ??? ??? ??? ???

OutWAgg Outliers are down-weighted. ‘weight_outlier()‘ ??? Single-Point 𝐵𝑖,𝑐
IntervalWAgg() Linearly-weighted best estimates, with weights influenced by interval widths

IntWAgg Weighted by interval width ‘weight_-
interval()‘

1 Three-point 𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐

IndIntWAgg Weighted by the re-scaled interval
width (interval width relative to
largest interval width provided by
individual 𝑖.

‘weight_-
nIndivInterval()‘

1 Three-point 𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐, 𝑈𝑖,𝑑, 𝐿𝑖,𝑑

AsymWAgg Weighted by asymetry of intervals ‘weight_asym()‘,
‘weight_-
nIndivInterval()‘

1 Three-point 𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐

IndIntAsymWAgg
Weighted by individuals’ interval
widths and their asymetry

‘weight_asym()‘,
‘weight_-
nIndivInterval()‘

1 Three-point 𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐, 𝑈𝑖,𝑑, 𝐿𝑖,𝑑

VarIndIntWAgg Weighted by the variation in
individuals’ interval widths across
estimates

‘weight_-
varIndivInterval()‘

1 Three-point 𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐, 𝑈𝑖,𝑑, 𝐿𝑖,𝑑
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Table 5: Summary of aggregation methods and functions, including data requirements and sources. (continued)

Method Description Data Requirements Weighting
Function

Elicitation
Rounds

Elicitation
Method

Data Sources

KitchWinkWAgg Weighted by everything but the
kitchen sink - rewards narrow and
assymetric intervals as well as the
variability of individuals’ interval
widths across estimates.

‘weight_asym()‘,
‘weight_-
nIndivInterval()‘,
‘weight_-
varIndivInterval()‘

1 Three-point 𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐, 𝑈𝑖,𝑑, 𝐿𝑖,𝑑

ShiftingWAgg() Weighted by judgemetns that shift most after discussion
ShiftWAgg Accounts for shifts in individuals’

best-estimates, upper and lower
bounds between rounds

Calculated
internally

2 IDEA protocol or
other structured
protocol that
generates multiple
rounds of
judgements using
three-point
elicitation

𝐵1𝑖,𝑐, 𝑈1𝑖,𝑐, 𝐿1𝑖,𝑐, 𝐵1𝑖,𝑐, 𝑈1𝑖,𝑐, 𝐿1𝑖,𝑐

BestShiftWAgg Weights constructed from shifts in
best-estimates

Calculated
internally

2 IDEA protocol or
other structured
protocol that
generates multiple
rounds of
judgements of
single
point-estimates

𝐵𝑖,𝑐

IntShiftWAgg Weights constructed from shifts in
interval widths

Calculated
internally

2 IDEA protocol or
other structured
protocol that
generates multiple
rounds of
judgements using
three-point
elicitation

𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐

DistShiftWAgg Weights constructed from degree of
extrimisation shift between rounds

Calculated
internally

2 IDEA protocol or
other structured
protocol that
generates multiple
rounds of
judgements of
single
point-estimates

𝐵𝑖,𝑐

DistIntShiftWAgg
Weights constructed by degree of
interval narrowing and shift towards
certainty bounds between rounds

Calculated
internally

2 IDEA protocol or
other structured
protocol that
generates multiple
rounds of
judgements using
three-point
elicitation

𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐
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Table 5: Summary of aggregation methods and functions, including data requirements and sources. (continued)

Method Description Data Requirements Weighting
Function

Elicitation
Rounds

Elicitation
Method

Data Sources

ReasonWAgg Weighted by the breadth of
reasoning (number of supplied
reasons) provided to support the
individuals’ estimate

‘data_supp_ReasonWAgg‘ ‘weight_reason()‘ 1 IDEA protocol or
other structured
protocol to elicit
reasoning, but
only sinle round
(round 2) of data
used in
aggregation
calculation.

𝐵𝑖,𝑐,
𝑤_𝑟𝑒𝑎𝑠𝑜𝑛𝑖,𝑐

ReasoningWAgg() Linearly-weighted best estimates, with weights constructed from supplementary reasoning data
ReasonWAgg2 Weighted by the breadth of

reasoning provided to support the
individuals’ estimate, rescaled by
breadth of reasoning across all claims

‘data_supp_ReasonWAgg‘ ‘weight_-
reason2()‘

1 IDEA protocol or
other structured
protocol to elicit
reasoning, but
only sinle round
(round 2) of data
used in
aggregation
calculation.

𝐵𝑖,𝑐, 𝑤_𝑟𝑒𝑎𝑠𝑜𝑛𝑖,𝑐, 𝑈𝑖,𝑑, 𝐿𝑖,𝑑, 𝑤_𝑟𝑒𝑎𝑠𝑜𝑛𝑖,𝑐

BetaArMean Beta-transformed arithmetic mean of
the best-estimates

NA - Estimates
are equally
weighted

1 Single-Point 𝐵𝑖,𝑐

ExtremisationWAgg() Takes the average of best-estimates and transforms it using the cumulative distribution function of a beta distribution
BetaArMean2 Beta-transformed arithmetic mean of

the best-estimates, but only to
confidence scores outside a specified
middle range.

NA - Estimates
are equally
weighted

1 Single-Point 𝐵𝑖,𝑐

DistribArMean Applies a non-parametric
distribution evenly across upper,
lower and best-estimates

NA - Estimates
are equally
weighted

1 Three-point 𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐

DistributionWAgg() Calculates the arithmetic mean of distributions created from expert judgements. The aggregate is the median of the average distribution fitted to individual estimates

TriDistribArMean
Applies a triangular distribution to
the upper, lower and best-estimates

NA - Estimates
are equally
weighted

1 Three-point 𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐

BayesianWAgg() Bayesian aggregation methods with either uninformative or informative prior distributions
BayTriVar Bayesian tripple variability method NA - Estimates

are equally
weighted

1 Three-point 𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐

BayPRIORsAgg As per ‘BayTriVar‘ but with priors
derived from external predictive
models, updated with individuals’
best-estimates

‘data_supp_BayPRIORsAgg‘ NA - Estimates
are equally
weighted

1 Three-point 𝐵𝑖,𝑐, 𝑈𝑖,𝑐, 𝐿𝑖,𝑐

???
?EngWAgg Weighted by the level of engagement

as measured by the individuals’
verbosity

‘data_justifications‘ Calculated
internally

2 Single-Point 𝐵𝑖,𝑐, 𝑤 _𝐸𝑛𝑔𝑖,𝑐
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?CompWAgg Weighted by the level of self rated
comprehension of the claim the
individuals’ report

Calculated
internally

1 Single-Point 𝐵𝑖,𝑐
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Computational details

The analyses and results in this paper were obtained using the following computing environ-
ment, versions of R and R packages:

R> devtools::session_info()

- Session info -----------------------------------------------------
setting value
version R version 4.2.1 (2022-06-23)
os macOS Monterey 12.6
system aarch64, darwin20
ui X11
language (EN)
collate en_AU.UTF-8
ctype en_AU.UTF-8
tz Australia/Melbourne
date 2022-11-07
pandoc 2.19.2 @ /Applications/RStudio.app/Contents/MacOS/quarto/bin/tools/ (via rmarkdown)

- Packages ---------------------------------------------------------
package * version date (UTC) lib source
abind 1.4-5 2016-07-21 [1] CRAN (R 4.2.0)
aggreCAT * 0.0.0.9002 2022-11-01 [1] local
assertthat 0.2.1 2019-03-21 [1] CRAN (R 4.2.0)
backports 1.4.1 2021-12-13 [1] CRAN (R 4.2.0)
boot 1.3-28 2021-05-03 [1] CRAN (R 4.2.1)
broom 1.0.1 2022-08-29 [1] CRAN (R 4.2.0)
cachem 1.0.6 2021-08-19 [1] CRAN (R 4.2.0)
callr 3.7.2 2022-08-22 [1] CRAN (R 4.2.0)
car 3.1-1 2022-10-19 [1] CRAN (R 4.2.0)
carData 3.0-5 2022-01-06 [1] CRAN (R 4.2.0)
cellranger 1.1.0 2016-07-27 [1] CRAN (R 4.2.0)
class 7.3-20 2022-01-16 [1] CRAN (R 4.2.1)
cli 3.4.1 2022-09-23 [1] CRAN (R 4.2.0)
coda 0.19-4 2020-09-30 [1] CRAN (R 4.2.0)
colorspace 2.0-3 2022-02-21 [1] CRAN (R 4.2.0)
cowplot 1.1.1 2020-12-30 [1] CRAN (R 4.2.0)
crayon 1.5.2 2022-09-29 [1] CRAN (R 4.2.0)
data.table 1.14.4 2022-10-17 [1] CRAN (R 4.2.0)
DBI 1.1.3 2022-06-18 [1] CRAN (R 4.2.0)
dbplyr 2.2.1 2022-06-27 [1] CRAN (R 4.2.0)
DescTools 0.99.47 2022-10-22 [1] CRAN (R 4.2.0)
devtools 2.4.5 2022-10-11 [1] CRAN (R 4.2.0)
digest 0.6.30 2022-10-18 [1] CRAN (R 4.2.0)
dplyr * 1.0.10 2022-09-01 [1] CRAN (R 4.2.0)
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e1071 1.7-12 2022-10-24 [1] CRAN (R 4.2.0)
ellipsis 0.3.2 2021-04-29 [1] CRAN (R 4.2.0)
evaluate 0.17 2022-10-07 [1] CRAN (R 4.2.0)
Exact 3.2 2022-09-25 [1] CRAN (R 4.2.0)
expm 0.999-6 2021-01-13 [1] CRAN (R 4.2.0)
fansi 1.0.3 2022-03-24 [1] CRAN (R 4.2.0)
farver 2.1.1 2022-07-06 [1] CRAN (R 4.2.0)
fastmap 1.1.0 2021-01-25 [1] CRAN (R 4.2.0)
forcats * 0.5.2 2022-08-19 [1] CRAN (R 4.2.0)
fs 1.5.2 2021-12-08 [1] CRAN (R 4.2.0)
gargle 1.2.1 2022-09-08 [1] CRAN (R 4.2.0)
generics 0.1.3 2022-07-05 [1] CRAN (R 4.2.0)
ggforce * 0.4.1 2022-10-04 [1] CRAN (R 4.2.0)
ggplot2 * 3.3.6 2022-05-03 [1] CRAN (R 4.2.0)
ggpubr * 0.4.0 2020-06-27 [1] CRAN (R 4.2.0)
ggridges * 0.5.4 2022-09-26 [1] CRAN (R 4.2.0)
ggsignif 0.6.4 2022-10-13 [1] CRAN (R 4.2.0)
gld 2.6.6 2022-10-23 [1] CRAN (R 4.2.0)
glue 1.6.2 2022-02-24 [1] CRAN (R 4.2.0)
googledrive 2.0.0 2021-07-08 [1] CRAN (R 4.2.0)
googlesheets4 1.0.1 2022-08-13 [1] CRAN (R 4.2.0)
gridExtra 2.3 2017-09-09 [1] CRAN (R 4.2.0)
gt 0.7.0 2022-08-25 [1] CRAN (R 4.2.0)
gtable 0.3.1 2022-09-01 [1] CRAN (R 4.2.0)
haven 2.5.1 2022-08-22 [1] CRAN (R 4.2.0)
hms 1.1.2 2022-08-19 [1] CRAN (R 4.2.0)
htmltools 0.5.3 2022-07-18 [1] CRAN (R 4.2.0)
htmlwidgets 1.5.4 2021-09-08 [1] CRAN (R 4.2.0)
httpuv 1.6.6 2022-09-08 [1] CRAN (R 4.2.0)
httr 1.4.4 2022-08-17 [1] CRAN (R 4.2.0)
insight 0.18.6 2022-10-23 [1] CRAN (R 4.2.0)
jsonlite 1.8.3 2022-10-21 [1] CRAN (R 4.2.0)
kableExtra * 1.3.4 2021-02-20 [1] CRAN (R 4.2.0)
knitr * 1.40 2022-08-24 [1] CRAN (R 4.2.0)
labeling 0.4.2 2020-10-20 [1] CRAN (R 4.2.0)
later 1.3.0 2021-08-18 [1] CRAN (R 4.2.0)
lattice 0.20-45 2021-09-22 [1] CRAN (R 4.2.1)
lifecycle 1.0.3 2022-10-07 [1] CRAN (R 4.2.0)
lmom 2.9 2022-05-29 [1] CRAN (R 4.2.0)
lubridate 1.8.0 2021-10-07 [1] CRAN (R 4.2.0)
magrittr 2.0.3 2022-03-30 [1] CRAN (R 4.2.0)
MASS 7.3-58.1 2022-08-03 [1] CRAN (R 4.2.0)
Matrix 1.5-1 2022-09-13 [1] CRAN (R 4.2.0)
memoise 2.0.1 2021-11-26 [1] CRAN (R 4.2.0)
mime 0.12 2021-09-28 [1] CRAN (R 4.2.0)
miniUI 0.1.1.1 2018-05-18 [1] CRAN (R 4.2.0)
modelr 0.1.9 2022-08-19 [1] CRAN (R 4.2.0)
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munsell 0.5.0 2018-06-12 [1] CRAN (R 4.2.0)
mvtnorm 1.1-3 2021-10-08 [1] CRAN (R 4.2.0)
pillar 1.8.1 2022-08-19 [1] CRAN (R 4.2.0)
pkgbuild 1.3.1 2021-12-20 [1] CRAN (R 4.2.0)
pkgconfig 2.0.3 2019-09-22 [1] CRAN (R 4.2.0)
pkgload 1.3.1 2022-10-28 [1] CRAN (R 4.2.0)
png 0.1-7 2013-12-03 [1] CRAN (R 4.2.0)
polyclip 1.10-4 2022-10-20 [1] CRAN (R 4.2.0)
precrec 0.12.9 2022-03-10 [1] CRAN (R 4.2.0)
prettyunits 1.1.1 2020-01-24 [1] CRAN (R 4.2.0)
processx 3.8.0 2022-10-26 [1] CRAN (R 4.2.0)
profvis 0.3.7 2020-11-02 [1] CRAN (R 4.2.0)
promises 1.2.0.1 2021-02-11 [1] CRAN (R 4.2.0)
proxy 0.4-27 2022-06-09 [1] CRAN (R 4.2.0)
ps 1.7.2 2022-10-26 [1] CRAN (R 4.2.0)
purrr * 0.3.5 2022-10-06 [1] CRAN (R 4.2.0)
R2jags 0.7-1 2021-08-05 [1] CRAN (R 4.2.0)
R2WinBUGS 2.1-21 2015-07-30 [1] CRAN (R 4.2.0)
R6 2.5.1 2021-08-19 [1] CRAN (R 4.2.0)
RColorBrewer 1.1-3 2022-04-03 [1] CRAN (R 4.2.0)
Rcpp 1.0.9 2022-07-08 [1] CRAN (R 4.2.0)
readr * 2.1.3 2022-10-01 [1] CRAN (R 4.2.0)
readxl 1.4.1 2022-08-17 [1] CRAN (R 4.2.0)
remotes 2.4.2 2021-11-30 [1] CRAN (R 4.2.0)
reprex 2.0.2 2022-08-17 [1] CRAN (R 4.2.0)
rfUtilities 2.1-5 2019-10-03 [1] CRAN (R 4.2.0)
rjags 4-13 2022-04-19 [1] CRAN (R 4.2.1)
rlang 1.0.6 2022-09-24 [1] CRAN (R 4.2.0)
rmarkdown 2.17 2022-10-07 [1] CRAN (R 4.2.0)
rootSolve 1.8.2.3 2021-09-29 [1] CRAN (R 4.2.0)
rstatix 0.7.0 2021-02-13 [1] CRAN (R 4.2.0)
rstudioapi 0.14 2022-08-22 [1] CRAN (R 4.2.0)
rvest 1.0.3 2022-08-19 [1] CRAN (R 4.2.0)
scales 1.2.1 2022-08-20 [1] CRAN (R 4.2.0)
sessioninfo 1.2.2 2021-12-06 [1] CRAN (R 4.2.0)
shiny 1.7.3 2022-10-25 [1] CRAN (R 4.2.0)
stringi 1.7.8 2022-07-11 [1] CRAN (R 4.2.0)
stringr * 1.4.1 2022-08-20 [1] CRAN (R 4.2.0)
svglite 2.1.0 2022-02-03 [1] CRAN (R 4.2.0)
systemfonts 1.0.4 2022-02-11 [1] CRAN (R 4.2.0)
tibble * 3.1.8 2022-07-22 [1] CRAN (R 4.2.0)
tidyr * 1.2.1 2022-09-08 [1] CRAN (R 4.2.0)
tidyselect 1.2.0 2022-10-10 [1] CRAN (R 4.2.0)
tidyverse * 1.3.2 2022-07-18 [1] CRAN (R 4.2.0)
tinytex * 0.42 2022-09-27 [1] CRAN (R 4.2.0)
tweenr 2.0.2 2022-09-06 [1] CRAN (R 4.2.0)
tzdb 0.3.0 2022-03-28 [1] CRAN (R 4.2.0)
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urlchecker 1.0.1 2021-11-30 [1] CRAN (R 4.2.0)
usethis 2.1.6 2022-05-25 [1] CRAN (R 4.2.0)
utf8 1.2.2 2021-07-24 [1] CRAN (R 4.2.0)
vctrs 0.5.0 2022-10-22 [1] CRAN (R 4.2.0)
viridisLite 0.4.1 2022-08-22 [1] CRAN (R 4.2.0)
webshot 0.5.4 2022-09-26 [1] CRAN (R 4.2.0)
withr 2.5.0 2022-03-03 [1] CRAN (R 4.2.0)
xfun 0.34 2022-10-18 [1] CRAN (R 4.2.0)
xml2 1.3.3 2021-11-30 [1] CRAN (R 4.2.0)
xtable 1.8-4 2019-04-21 [1] CRAN (R 4.2.0)
yaml 2.3.6 2022-10-18 [1] CRAN (R 4.2.0)

[1] /Library/Frameworks/R.framework/Versions/4.2-arm64/Resources/library

--------------------------------------------------------------------
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