Package ‘SIMRiv’

January 20, 2025
Version 1.0.7
Date 2024-09-09

Title Simulating Multistate Movements in River/Heterogeneous
Landscapes

Depends R (>=3.5.0), terra
Imports methods, stats, mco, parallel
Suggests adehabitatL.T, moveHMM, testthat, sf

Description Provides functions to generate and analyze spatially-explicit individual-
based multistate movements in rivers,
heterogeneous and homogeneous spaces. This is done by incorporating landscape bias on lo-
cal behaviour, based on
resistance rasters. Although originally conceived and designed to simulate trajecto-
ries of species constrained to
linear habitats/dendritic ecological networks (e.g. river networks), the simulation algo-
rithm is built to be
highly flexible and can be applied to any (aquatic, semi-
aquatic or terrestrial) organism, independently on the
landscape in which it moves. Thus, the user will be able to use the package to simulate move-
ments either in
homogeneous landscapes, heterogeneous landscapes (e.g. semi-
aquatic animal moving mainly along rivers but also using
the matrix), or even in highly contrasted landscapes (e.g. fish in a river network). The algo-
rithm and its input
parameters are the same for all cases, so that results are comparable. Simulated trajecto-
ries can then be used as
mechanistic null models (Potts & Lewis 2014, <DOI:10.1098/rspb.2014.0231>) to test a vari-
ety of 'Movement Ecology'
hypotheses (Nathan et al. 2008, <DOI:10.1073/pnas.0800375105>), including landscape ef-
fects (e.g. resources,
infrastructures) on animal movement and species site fidelity, or for predictive pur-
poses (e.g. road mortality risk,
dispersal/connectivity). The package should be relevant to explore a broad spectrum of ecologi-
cal phenomena, such as
those at the interface of animal behaviour, management, landscape and movement ecology, dis-
ease and invasive species

https://doi.org/10.1098/rspb.2014.0231
https://doi.org/10.1073/pnas.0800375105

SiMRiv-package

spread, and population dynamics.

License GPL (>=2)

URL https://www.r-project.org, https://github.com/miguel-porto/SiMRiv

BugReports https://github.com/miguel-porto/SiMRiv/issues

NeedsCompilation yes

Author Lorenzo Quaglietta [aut],

Miguel Porto [aut, cre],
Erida Gjini [ctb]

Maintainer Miguel Porto <mpbertolo@gmail.com>
Repository CRAN
Date/Publication 2024-09-10 09:30:05 UTC

Contents
SiMRiv-package 2
adjustModel e 4
Arith-methods L 8
binCounts 9
generationPlot 10
perceptualRange L 11
resistanceFromShape L 12
sampleMovement e e 14
simulate 15
SPECIES & v v o o e e e e e e e e e e e e e e e e 19
speciesModel L e 20
] 1 22
transitionMatrix L L. e 23

Index 25

SiMRiv-package Simulating Multistate Movements in River/Heterogeneous Landscapes
Description

Provides functions to generate and analyze individual-based, spatially-explicit simulations of multi-
state movements in homogeneous or heterogeneous landscapes, based on "resistance" rasters. Al-
though originally conceived and designed to simulate spatially-explicit trajectories of species con-
strained to linear habitats or dendritic ecological networks (e.g., river networks), the simulation
algorithm is built to be highly flexible and can be applied to any (aquatic, semi-aquatic or terres-
trial) organism, independently of the landscape in which it moves. Thus, the user will be able to use
the package to simulate movements either in homogeneous landscapes, heterogeneous landscapes
(e.g. semi-aquatic animal moving mainly along rivers but also using the matrix), or even in highly
contrasted landscapes (e.g. fish in a river network). The algorithm and its input parameters are the

https://www.r-project.org
https://github.com/miguel-porto/SiMRiv
https://github.com/miguel-porto/SiMRiv/issues

SiMRiv-package

same for all cases, so that results are comparable. Simulated trajectories can then be used as mech-
anistic null models (Moorcroft and Lewis 2006) to test e.g. for species site fidelity (Powell 2000)
and other "Movement Ecology’ hypotheses (Nathan et al. 2008), or for other predictive purposes.
The package should thus be relevant to explore a broad spectrum of ecological phenomena, such as
those at the interface of animal behaviour, landscape, spatial and movement ecology, disease and
invasive species spread, and population dynamics.

Details

simulate is the central function. See the examples in ?simulate to quickly get started, or the
vignette for a more verbose tutorial.

Index of help topics:

Arith-methods
SiMRiv-package

Shortcuts for defining species movement states
Simulating Multistate Movements in
River/Heterogeneous Landscapes

adjustModel Finds ("estimates”) simulation input parameters
able to replicate a given (real) trajectory,
assuming the given species model

binCounts Count values in given bins

generationPlot Plots input parameter optimization results

perceptualRange Define a perceptual range

resistanceFromShape Build resistance raster by combining shapefiles

sampleMovement Resample a simulated movement and compute
step-wise statistics

simulate Simulate movements in river networks,
homogeneous, or heterogeneous landscapes

species Create a species

speciesModel Defines a species model to adjust to a real
trajectory

state Define a movement state

transitionMatrix Define a state transition matrix

Further information is available in the following vignettes:

SiMRiv Usage of the SiMRiv package (source)

References

* Powell, R. A. 2000. Animal home ranges and territories and home range estimators. In:
Research techniques in animal ecology: controversies and consequences, 442. Boitani, L., &
Fuller, T. (Eds.). Columbia university press, New York: pp.65-110.

* Moorcroft, P. R. & Lewis, M. A. 2006. Mechanistic Home Range Analysis. Monographs in
Population Biology 43. Eds. Levin S.A. and H.S. Horn. Princeton University Press. pp 172.

e Nathan, R., Getz, W. M., Revilla, E., Holyoak, M., Kadmon, R., Saltz, D., & Smouse, P. E.
2008. A movement ecology paradigm for unifying organismal movement research. Proceed-
ings of the National Academy of Sciences,105(49), 19052-19059.

4 adjustModel

Examples

a simple Levy-like movement in homogeneous space
see ?simulate for more complex examples

LevyWalker <- species(
state.RW() + state.CRW(@.99),
transitionMatrix(0.005, 0.02))

sim <- simulate(LevyWalker, 20000)
plot(sim, type="1", asp=1)

adjustModel Finds ("estimates") simulation input parameters able to replicate a
given (real) trajectory, assuming the given species model

Description

Given a trajectory, a type of movement and the time resolution at which the user wants to simulate,
this function approximates the values for the simulation input parameters so that the simulated
movement is maximally similar to the given trajectory, in terms of general non-spatial patterns. If
the user wants to simulate at a higher frequency than real data (which is the norm), the function
maximizes the similarity between the real trajectory and the simulated trajectories (at a higher
frequency) after downsampled to the same frequency as the real. It does so by running a genetic
optimization algorithm.

Usage

adjustModel (realData, species.model, resolution = 10
, resistance = NULL, coords = NULL, angles = NULL
, nrepetitions = 6
, nbins.hist = if(aggregate.obj.hist) c(7, 7, @) else c(3, 3, 0)
, step.hist.log = TRUE, nlags = 100
, window.size = dim(reference$stats)[1]%/%nlags
, aggregate.obj.hist = TRUE, step.hist.range = c(0, 1)
, popsize = 100, generations = seq(5, 1000, by=5), mprob = 0.2
, parallel = is.null(resistance), trace = TRUE

Arguments

realData the given trajectory for which the simulation input parameters are to be "esti-
mated", given as a matrix with two columns (coordinates) and assuming that
relocations are equally spaced in time.

species.model the species model to adjust, created with speciesModel. This defines the type of
movement that is to be adjusted (e.g. how many, and which type of, behavioral
states, see details).

adjustModel 5

resolution the desired time frequency of the simulations for which parameters will be ap-
proximated, as a fraction of the real data, i.e. a value of 20 will simulate move-
ments at a 20-fold higher frequency than real data.

resistance the resistance raster to use in simulations during parameter approximation.

coords the initial coordinates of the simulated individuals (only relevant if resistance
is provided because the metrics used in optimization are spatially-agnostic).

angles the initial angle to which the individual is facing in that start of all simulations
(only relevant if resistance is provided because the metrics used in optimiza-
tion are spatially-agnostic).

nrepetitions the number of simulations conducted for each solution evaluation during op-
timization. If >1, the quality of the solutions is computed by comparing the
averaged histograms across repetitions, with the real histograms.

nbins.hist a vector with three positive integers defining the number of histogram bins for
turning angle histograms, step length histograms and turning angle variation
histograms. These bins will be used during optimization to compare simulated
trajectories with the real trajectory to infer the quality of the "fit".

step.hist.log setto TRUE to use the histogram of the logarithm of the step lengths rather than
of the raw values in the comparisons. Setting to TRUE usually results in more
detail in the comparisons.

nlags the number of time lags within which the standard deviation of the turning an-
gles will be computed during optimization, if nbins.hist[3] > 0. Ignored if
nbins.hist[3] == @ or if window. size is provided.

window.size the size (in steps of the real sampling frequency) of the time lags within which
the standard deviation of the turning angles will be computed during optimiza-
tion, if nbins.hist[3] > @. A different way of providing nlags. See details.
aggregate.obj.hist
if FALSE, comparison of histograms is done bin by bin (each bin absolute dif-
ference is an objective to minimize), if TRUE the absolute differences of the bins
are summed in each histogram to a single number which is the objective being
minimized (the overall absolute difference in each of the histograms).
step.hist.range
the quantiles used to define the range of the step length histogram computation.
Used if the user wants to exclude outliers. The default is not to exclude outliers,

thus c(@, 1).

popsize number of solutions to optimize, to pass to nsga?2

generations number of algorithm generations to run, to pass to nsga2. The default is a vector,
so that convergence of results can be assessed along generations.

mprob mutation probability, to pass to nsga2

parallel set to TRUE to use multicore processing.

trace set to TRUE to print the matrix of optimization objectives (rows) for each solution

(columns) in each generation along optimization. These are the values that are
being internally minimized. The number of rows is sum(nbins.hist); the first
nbins.hist[1] are the turning angle variation objectives, the last are the step
length objectives.

6 adjustModel

Details

This function finds possible parameters for the simulation (solutions), so that the resulting move-
ments are as similar as possible to the given real trajectory, in terms of their intrinsic properties mea-
sured by step lengths and variation in turning angles. The input parameter approximations are found
using a multiobjective genetic algorithm (NSGA-II, Deb et al. 2002). The algorithm minimizes a
vector of N objectives (N=sum(nbins.hist) if aggregate.obj.hist == FALSE, N=sum(nbins.hist > 0)
otherwise) whose values are computed by the absolute differences between each pair of bins (real
and simulated) of up to three histograms: an histogram of the step lengths, an histogram of turning
angles and/or and histogram of the standard deviation in turning angles computed in a moving time
window along each trajectory. Using either of these histograms (and the respective number of bins)
is specified in the parameter nbins.hist, which has three elements, one for each histogram. A
value of 0 tells the function not to use that corresponding histogram.

SiMRiv simulations are intended to reproduce the fine-scale movement steps, unlike what is nor-
mally collected in field data. Hence, simulations should be conducted with a much higher time
frequency than provided by the real data, which poses challenges for parameterization. This func-
tion incorporates this difference in the time scale during optimization (resolution), allowing the
user to find the input parameters for simulations at a much higher frequency, which, when down-
sampled to the real data’s time frequency, will present similar patterns. The higher the frequency,
the more flexibility the model has to adjust to real data, but the more possible solutions may exist
to achieve the same result.

There are no limits to the number of parameters that can be approximated, but obviously, the higher
the number, the larger the solution space, so, in theory, the longer the algorithm has to run in or-
der to converge. The number of parameters to approximate is defined by the user by providing
a speciesModel. This defines how many states and which types of states are to be "fit" to the
data. See speciesModel for details. Trials have shown that even when the number of parameters
to approximate is high (e.g. 12 parameters for "fitting" a 3-state movement model), the algorithm
converges rapidly if the real movement suits such model. However, as in any other method, a com-
promise should be sought. A good starting point is to provide a two-state species model, in which
both states are Correlated Random Walks. This model involves the approximation of 6 parameters
and is sufficiently flexible for simulating a variety of movements, while not overly complex. Note
that all complex models can accomodate to simpler ones (i.e. the simpler models are special cases
of the complex ones).

To assess the convergence of the algorithm, an utility plotting function is provided, see the example
below and generationPlot for details.

Value

The object returned by nsga2 (package mco), see details therein. If generations is a vector (which
is recommended, for assessing convergence), this object contains the approximated input parameter
values in each generation given in the vector. See examples for easily plotting results.

Note

This function is an experimental feature, here provided only to guide the user on how to parameter-
ize the simulations. Care must be taken when interpreting the results, at least by assessing algorithm
convergence and visually comparing simulations with the approximated parameters to the real data
(see examples).

adjustModel 7

References

* Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. 2002. A fast and elitist multiobjective
genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 6(2), 182-
197.

See Also

simulate, generationPlot.

Examples

#it

Not run:

library(SiMRiv)
library(adehabitatLT)

#it
#it

simulate "real” data, a Levy walk, for which we want to
parameterize our model

real.data <- simm.levy(1:500)[[1]11[, 1:2]

#it
#i#
#it
#it
#i#
#it
#it
#i#
#it
#it
#it

#it
#it
#it
#it
#it
#it

Define a species model to adjust. Let's assume we don't know
much about what kind of real data we have, hence define
a flexible model: a two-state correlated random walk model
with variable step lengths.
This model implies "estimating” 6 parameters:

- turning angle correlation of state 1 [0, 1]

- turning angle correlation of state 2 [0, 1]

- switching probability S1 -> S2 [0, 1]

- switching probability S2 -> S1 [0, 1]

- maximum step length of state 1 [0, ?]

- maximum step length of state 2 [0, ?7]

Let's assume we want to simulate at a 20 times higher time frequency
than real data.

In order to allow our model to adjust to real data, we have

to provide a maximum allowable step length to the optimization algorithm
that allows to recover real data after downsampling 20 times.

Let's make a simple calculation of the step lengths of real data:

tmp <- sampleMovement(real.data)

#it
#i#
#it

and compute a good maximum allowed step length during optimization
using the observed maximum divided by 20 (because each real step
will comprise 20 simulated steps)

max.step.length <- max(tmp$stat[, "steplengths”]) / 20

#it
#i#
#it

and finally build the species model with it.
Note: "CRW.CRW.sl"” is the short name for the model we want,
as defined above

species.model <- speciesModel("CRW.CRW.sl"”, steplength = max.step.length)

Arith-methods

now run optimization

sol <- adjustModel(real.data, species.model, resol = 20
, nbins.hist = ¢(3, 3, @), step.hist.log = TRUE)

After finishing, we can extract the input parameters of the optimized
solutions (100 by default) in the last generation (generation 1000
by default):

pars <- sol[[length(sol)]l$par

now we can take the optimized solutions and reconstruct species
based on them:

optimized.species <- apply(pars, 1, species.model)

and make some simulations with those optimized species.
Plot real trajectory

par(mfrow = c(2, 2), mar = c(0, @, 1, 0))
plot(real.data, type = "1", asp = 1, axes = F, main = "Real”)

plot three simulated trajectories with optimized species

for(i in 1:3) {

remember we want to simulate at a 20 times higher frequency
so we do 500 (real data) x 20 steps

sim <- simulate(optimized.species[[i]], 500 * 20)

now we downsample frequency to match real
samp <- sampleMovement(sim, 20)

and plot the simulated trajectory before and after
downsampling 20 times.

plot(sim[, 1:2], type = "1", asp = 1, axes = F, col = "gray"
, main = "Simulated and downsampled")
lines(samp$relocs, col = "black")

}

Now plot the evolution of parameters along algorithm's generations.
This is good to assess whether the final solutions converged
but see ?generationPlot for details

generationPlot(sol, species.model)

End(Not run)

Arith-methods Shortcuts for defining species movement states

binCounts 9

Description

Shortcuts for defining species movement states with the arithmetic operators +, *.

The + applied to states or species and a number defines the step length of one behavioural state or
of all states of a species.

The * applied to states or species and a number defines the radius of the perceptual range of one
behavioural state or of all states of a species.

Further, states can be combined with + to define multistate movements in a species. See examples.

Methods

signature(el ="1ist", e2="state") Adds one state to a list of states.
signature(el = "species”, e2 = "ANY") Applies the operation to all states in the given species.

signature(el = "state”, e2="1ist"”) Adds one state to a list of states.

signature(el = "state"”, e2 = "numeric") Sets the step length of the given state to the given
value.

signature(el = "state"”, e2 = "state"”) Combines two states in a list of states to be used with
species.

See Also

species, state.

Examples

define a species with two states
twostatespecies <- species(state.RW() + state.CRW(@.9)
, transitionMatrix(@.01, 0.02))

set the perception window radius of both states to 200
and the step length to 10
twostatespecies <- twostatespecies * 200 + 10

binCounts Count values in given bins

Description
A convenience function to count the values (optionally log-transformed) falling within given equal-
range bins.

Usage

binCounts(data, range, nbins, log = FALSE)

10 generationPlot

Arguments
data a numeric vector with the data.
range the closed data range in which to divide bins, as a two-element numeric vector.
Values falling outside range are discarded.
nbins the number of bins to split the data. Result is guaranteed to have this number of
bins, irrespective of data.
log whether or not to log-transform data and ranges before binning.
Details

This is just a convenience function to simplify the task of couting data in equal bins. The same result
could be achieved with hist with the right arguments. It is mostly used internally by adjustModel
during the approximation on input parameters, for the computation of objectives.

Value

A named vector with the counts of values in each bin.

See Also

adjustModel.

generationPlot Plots input parameter optimization results

Description

Plots the evolution of the optimized solutions (sets of input parameters) along the adjustModel
algorithm’s generations.

Usage

generationPlot(solutions, species.model
, plot.quantiles = c(0.10, @0.5, ©0.90), only.pareto = FALSE
, show.legend = TRUE, 1lwd = 1.5, mar = c(2.3, 2.3, 0.2, 2.3)
, mgp = c(1.2, 0.2, 0), tcl = -0.25, ...)

Arguments

solutions the result of adjustModel.
species.model the species model that was adjusted and that was passed to adjustModel.

plot.quantiles the three quantiles to plot. The middle is plotted as a solid line, the extremes
define the shaded area.

only.pareto whether to display the quantiles only of the Pareto front (TRUE) or of all solutions
(FALSE).

perceptualRange 11

show. legend whether to show a legend indicating the correspondence of colors - input param-
eters.

lwd line width to be used to draw the middle quantile (usually the median).

mar, mgp, tcl, ...

arguments to pass to par.

Details

The generation plot depicts, for each generation of the optimization algorithm, the given quantiles
of each input parameter being optimized in the population of solutions. This is not the ideal plot
because input parameters are plotted independently, while they are only supposed to make sense
in the context of a given solution (i.e. it is the combination of the input parameters that is being
optimized, not the parameters in isolation).

Nonetheless, this plot is still a good way to assess whether the final solutions converged to stable
values, which can indicate that the algorithm succeeded in replicating the real trajectory provided.
However, note that depending on how the problem is formulated, the solutions might not be ex-
pected to converge to a single solution "type": for example, there can be two types of solutions,
corresponding to two different ways of achieving similar results.
Value

Returns, invisibly, a 3-D matrix with the computed quantiles for all input parameters along genera-
tions.

See Also

adjustModel.

Examples

see ?adjustModel for a complete example

perceptualRange Define a perceptual range

Description

Defines the perceptual range to be used in a movement state.

Usage
perceptualRange(type = "circular”, radius)
Arguments
type defines the type of weights that are given to each pixel, according to the distance
to its center. One of circular or gaussian.
radius the radius of the circular perceptual range, or the sigma of the gaussian percep-

tual range, in map units.

12 resistanceFromShape

Details

The perceptual range is often defined as the distance (radius) at which the species perceives the
environment, based, e.g., on sense of smell, vision, audition, etc. (Lima & Zollner 1996; Powell
2000). In SiMRiv, perceptual range should be seen as the distance (radius) at which the species
evaluates the landscape resistance around its current location, influencing species next heading.
Perceptual range size can be defined (in meters or other map units) based on available literature (on
species perceptual range, or, as its surrogate, species home range size), on expert-based criteria, or
be estimated from real data.

A circular range gives equal weight to all pixels, which form a circle centered on current indi-
vidual’s position. A gaussian range gives weights corresponding to a gaussian kernel centered on
current individual’s position.

References

* Lima, S. L., & Zollner, P. A. (1996). Towards a behavioral ecology of ecological landscapes.
Trends in Ecology & Evolution, 11(3), 131-135.

* Powell, R. A. 2000. Animal home ranges and territories and home range estimators. In:
Research techniques in animal ecology: controversies and consequences, 442. Boitani, L., &
Fuller, T. (Eds.). Columbia university press, New York: pp.65-110.
See Also

state.

resistanceFromShape Build resistance raster by combining shapefiles

Description

Creates a resistance raster to be used in simulations, by rasterizing and combining different shape-
files. It is basically a helper function that uses the functions from package terra-package to create
and manipulate such raster.

Usage

resistanceFromShape(shp, baseRaster, res, binary = is.na(field)
, field = NA, background = 1, buffer = NA, margin = 0

, mapvalues = NA, extend = TRUE, ...)
Arguments
shp either a character string specifying the shapefile filename or a shapefile object
itself.
baseRaster if provided, a raster onto which to stack the given rasterized shapefile. If not

provided, a new raster will be created.

resistanceFromShape
res
binary

field

background

buffer

margin

mapvalues

extend

Details

13

the desired pixel resolution of the raster to be created, when baseRaster is not
provided.

if TRUE, the shapefile will be rasterized so that any feature is assigned a value
of 0, and the background 1.

either a number in the range [0-1], in which case it will be assigned to all pixels
covered by features of the shapefile; or the name of the numeric shapefile field
from which to extract such number; or the name of the factor shapefile field
containing classes to map to resistance values (see mapvalues).

the value in the range [0-1] to assign to all pixels that are not covered by any
shapefile feature.

the size of a buffer to build around every shapefile feature before rasterizing.

the margin to leave around the shapefile’s extent when rasterizing (i.e. how
much to increase shapefile’s extent).

a named vector specifying the resistance value mapping from the classes of
field.

set to TRUE to extend baseRaster if the shapefile has a larger extent. If FALSE,
the shapefile will be clipped to baseRaster’s extent.

other arguments to pass to rasterize.

This function rasterizes the given shapefile using provided options and optionally stacks it onto the
provided baseRaster. The produced raster does not contain NAs and all values are in the range [0,
1]. All the areas of the raster for which data is not provided are assigned the value of background.

When combining a shapefile to an existing baseRaster, only the areas covered by features are
updated in the base raster; all the remaining areas are left with the original values of baseRaster.
If the shapefile to combine has a larger extent than baseRaster, those extra pixels will be assigned
the background value defined for the shapefile (not use the original background of baseRaster).

Value

The resistance raster, an object of class SpatRaster-class.

See Also

simulate.

Examples

Example taken from the vignette; see the vignette

for more details and examples.

In this example we read a land cover shapefile and
assign resistance values based on each polygon's

land cover class (provided in the field 'coverclass')

landcover <- resistanceFromShape(
system.file("doc/landcover.shp”, package="SiMRiv")

14 sampleMovement

, res = 150, field = "coverclass"”, mapvalues = c(
"forest” = 0.5, "urban” = 1, "dam” = 0
, "shrubland” = 0.75), background = 0.95)

We then combine it with a river network from another
shapefile, assigning a value of @ to all rivers

river.landcover <- resistanceFromShape(
system.file("doc/river-sample.shp”, package="SiMRiv")
, baseRaster = landcover, buffer = 100, field = 0
, background = 0.95, margin = 1000)

plot(river.landcover, axes = FALSE, mar = c(0, 0, 0, 2))

sampleMovement Resample a simulated movement and compute step-wise statistics

Description

Resamples a movement simulated with the function simulate to a lower temporal resolution (fre-
quency). Simultaneously, computes step length, turning angles (Turchin 1998) and accumulated
resistance for each resampled step, assuming that a straight line connects each re-sampled location.

Usage

sampleMovement(relocs, resolution = 1, resist = NULL)

Arguments
relocs the simulated movement, an object returned by simulate. NOTE: currently this
is only implemented for simulations of single individuals.
resolution movement will be resampled every this number of time ticks. If 1, no resampling
is done (but metrics are computed).
resist a landscape resistance raster, usually the same that was used in simulate
Details

This function mimics what happens in real world movement data: it resamples the simulated move-
ment (which is supposed to be infinitesimal) into a lower temporal resolution, so that it is com-
parable to real world field data (e.g. telemetry data). During the process, it computes, for each
resampled step:

* the step length

* the turning angle

* the accumulated resistance along the step, assuming a straight line is taken from start to end

simulate 15

Value

A list with the components relocs and stats.

relocs contains the resampled positions, stats contains the metrics for each step (which has N-2
rows because of the turning angles).

Note
These metrics are only meaningful for resolution » 1, otherwise they are just a consequence of
the simulation input parameters.
References
* Turchin, P. 1998. Quantitative analysis of movement: measuring and modeling population
redistribution in animals and plants (Vol. 1). Sinauer Associates, Sunderland, MA.

See Also

simulate.

Examples

library(SiMRiv)

LevyWalker <- species(
state.RW() + state.CRW(0.99),
trans = transitionMatrix(@.005, 0.02))

sim <- simulate(LevyWalker, 10000)
resamp <- sampleMovement(sim, 50)
plot(sim, type="1", asp=1, col = "#777777")
lines(resamp$relocs, col = "red")

simulate Simulate movements in river networks, homogeneous, or heteroge-
neous landscapes

Description

Performs fast and spatially-explicit simulation of multi-state random movements (Morales et al.
2004, McClintock et al. 2012) of individuals created with the function species in an optional
landscape resistance raster.

Usage

simulate(individuals, time, coords = NULL
, states = NULL, resist = NULL, angles = NULL
, start.resistance)

16 simulate

Arguments

individuals a species or a list of N species whose movements are to be simulated

time the number of time steps to be simulated

coords a N x 2 matrix giving the initial coordinates of the simulation, for each individ-
ual. Can be a vector of the form c(x, y) if only one individual is provided.

resist an optional landscape resistance raster of class RasterLayer. If not provided,
movements are simulated in an homogeneous environment.

angles an optional numeric vector of length N defining the initial heading of each indi-

vidual, in radians. Zero is north and angles increase clockwise.
start.resistance

an optional scalar in the range [0, 1] giving the maximum resistance value in

which the individuals are allowed to start, if coords is NULL and resist is

provided

states Not implemented yet. An optional numeric vector of length N defining the initial
state of each individual.

Details

Performs a mechanistic simulation of the movement of the given individual/s (when more than one
individual is given, their movements are simulated simultaneously) in the given landscape raster
defining physical resistance values. At present, multiple individuals do not interact, but in the
upcoming version it will be possible to define positive and negative interactions between simulated
individuals, thus accounting for spatial bias.

The simulation runs in a series of micro-steps, and is intended to be a high-resolution simulation
(which can be later sampled with sampleMovement to emulate real field data, e.g. telemetry data).

In summary, at each micro-step the individual chooses a random direction which is based on the
previous step heading and in the resistance context at the current position, such that it will avoid
heading to areas with high resistance. This evaluation depends on the individual’s perceptual range
in the current movement state. At each step, a test to see if the individual changes its state is also
performed, based on the provided transitionMatrix. Each state may have its own perceptual
range, step length and angular correlation (with previous step heading). It’s up to the user the
definition of these values (e.g., expert- or literature-based), but we provide an experimental function
to numerically approximate these values from real data, see adjustModel.

In more detail, in each of the time steps, the procedure is as follows:

1. Draw state for the current step according to state transition matrix and previous state

2. Compute empirical probability density for changing heading, from the landscape raster values
around current position (resistance component). See details below.

3. Compute probability density for changing heading, given the previous step heading and cor-
relation defined in the current state (correlated walk component)

4. Intersect the resistance component with the correlated walk component to make a compound
probability density for changing heading

5. Draw the new heading from the probability density distribution computed above

6. Compute the length of the step that will be taken as a fraction of current step’s defined length
proportional to mean resistance of the starting and ending points in the chosen heading

simulate 17

7. Move to the new position, defined by the drawn heading and length of step.

Details of the simulation algorithm:

The landscape resistance raster: This raster represents the amount of physical resistance that
is offered to the simulated individuals. The values must be between 0 (no resistance) and 1
(infinite resistance). In the future, other types of rasters can be provided, for example rasters for
resource availability, habitat suitability and points of attraction/repulsion, allowing to conduct
simulations with various types of spatial bias.

A careful choice of pixel size must be taken for the resistance raster. If rasterizing from vector
lines (e.g. river network), please be sure to adjust the pixel size so that there are no gaps between
river pixels and all pixels of the river are connected orthogonally.

The empirical probability density: The empirical probability density for a given point (resis-
tance component) is computed by summing the 1 - resistance values along a set of discrete
radial lines departing from that point, forming a circle. The length of the lines (i.e. radius) and
weighting given to each pixel are defined in the current state’s perceptual range. The sums are
packed and used as the circular empirical distribution of the resistance component. This will be
crossed with the correlated walk component to yield the final empirical probability distribution
from which heading will be drawn.

Value

A matrix with 3 columns for each simulated individual, in the order x1, yl1, statel, x2, y2, state2,
...; and the same number of rows as the simulation length (given by time).

Note

The structure of the returned object will change in the upcoming version.

References

* McClintock, B. T., King, R., Thomas, L., Matthiopoulos, J., McConnell, B. J., & Morales, J.
M. 2012. A general discrete-time modeling framework for animal movement using multistate
random walks. Ecological Monographs, 82(3), 335-349.

* Morales, J. M., Haydon, D. T., Frair, J., Holsinger, K. E., & Fryxell, J. M. 2004. Extract-
ing more out of relocation data: building movement models as mixtures of random walks.
Ecology, 85(9), 2436-2445.

* Sims, D. W, Southall, E. J., Humphries, N. E., Hays, G. C., Bradshaw, C. J., Pitchford, J. W.,
... & Morritt, D. 2008. Scaling laws of marine predator search behaviour. Nature, 451(7182),
1098-1102.

* Turchin, P. 1998. Quantitative analysis of movement: measuring and modeling population
redistribution in animals and plants (Vol. 1). Sinauer Associates, Sunderland, MA.

See Also

species, sampleMovement, adjustModel.

18 simulate

Examples

library(SiMRiv)

A classic: simple random walk (Brownian motion) (Turchin 1998)
i.e. single-state uncorrelated movement in an homogeneous landscape
S HEHHRHRHEH R AR E AR R R R R

a single state, other parameters set to defaults

rand.walker <- species(state.RW())
sim <- simulate(rand.walker, 10000)
plot(sim, type="1", asp=1)

two random walkers
S

sim <- simulate(list(rand.walker, rand.walker), 10000)
plot(sim[,1:2], type="1", asp=1, xlim=range(sim), ylim=range(sim), col=2)
lines(sim[,4:5], col=3)

Another classic: Levy walk-like movement (e.g. Sims et al. 2008)
i.e. two-state movement: composition of small-scale random walks
with bursts of longer, correlated random walks

B S S

LevyWalker <- species(
state.RW() + state.CRW(@.99),
transitionMatrix(0.005, 0.02))

sim <- simulate(LevyWalker, 10000)
plot(sim, type="1", asp=1)

Linear habitats, e.g. fish in a river network
B A A AR

load sample river raster in a fish's perspective,
i.e. resistance is @ within the river, 1 otherwise.

river <- terra::rast(system.file("doc/river.tif", package="SiMRiv"))

let's try a Levy-like movement in a river network
note: perceptual range radii and step lengths must be
adequate to the raster resolution!

LevyWalker <- species(list(
state(@, perceptualRange("cir”, 100), 10, "RandomWalk")
,state(0.97, perceptualRange("cir”, 500), 20, "CorrelatedRW")
), transitionMatrix(0.005, 0.001))

NOTE: the following lines do exactly the same as above, but
using the more convenient arithmetic operator shortcuts

species 19

LevyWalker <- species(
(state.RW() * 100 + 10) + (state.CRW(0.97) * 500 + 20)
, transitionMatrix(0.005, 0.001))

sim <- simulate(LevyWalker, 20000, resist = river
, coords = c(280635, 505236))

plot movement; we use a high-res TIFF so that it
can be viewed in detail
Not run:
tiff("movement.tif"”, wid=5000, hei=5000, comp="1zw")
par(mar = c(@, 0, 0, 0))
plot(river, asp = 1, col = gray(seq(1, 0.5, len = 2))
, ylim = range(sim[,2]), xlim = range(sim[,1]), axes = FALSE)
lines(sim, lwd = 2, col = "#0000ffcc")
dev.off()

End(Not run)

if we want the kernel density overlaid,
uncomment these and put before dev.off()
library(ks)

d <- kde(sim[,1:2]1)

plot(d, disp = "image", add=TRUE

, col = rgb(1, 0, 0, seq(@, 1, len = 15)))
species Create a species
Description

Creates a species, characterized by one or more behavioral states, to be simulated with function
simulate.
Usage

species(states, trans = transitionMatrix(), name = "<unnamed>"
, resistanceMap = NULL)

Arguments
states a list of states characterizing the behavior of the species, or a single state, for
simple movements
trans a square state transition matrix, defining the probability of changing between
states. For convenience, use the function transitionMatrix. Can be omitted
if this species has a single-state movement.
name the name of the species

resistanceMap not used. Will be implemented in future versions.

20 speciesModel

Details

The rows and columns of the transition matrix correspond in the same order to the list of states. The
matrix is not symmetric, and is read along the rows, i.e. the probability of changing from state 2 to
state 1 is located in row 2, column 1; hence rows must sum to 1 but columns not.

Value

An object of class species.

See Also

simulate, perceptualRange, state, transitionMatrix, Arith-methods.

Examples

example from 'simulate'

note: perceptual range radii and step lengths must be
adequate to the raster resolution!

LevyWalker <- species(
(state.RW() * 100 + 10) + (state.CRW(@.97) * 500 + 20)
, transitionMatrix(0.005, ©.001))

speciesModel Defines a species model to adjust to a real trajectory

Description

The sole purpose of this function is to be used in conjunction with adjustModel. It is used to tell
the optimization algorithm which parameters are to be approximated, and which are constant.

Usage

speciesModel (type, perceptual.range = @, steplength =1
, prob.upperbound = 0.5, max.concentration = 0.99)

Arguments

type the type of movement to "fit". One of CRW, RW.CRW, CRW.CRW, RW.CRW.s1,
CRW.CRW.sl
perceptual.range

the perceptual range for all states.
steplength the fixed step length for fixed step length types CRW, RW.CRW, CRW.CRW or the

maximum allowed value for variable step length types RW.CRW.s1, CRW.CRW.s1,
CRW.CRW.CRW.sl and CRW.RW.Rest.sl.

speciesModel 21

prob.upperbound
the maximum allowed value for the state switching probabilities. The default is
0.5 because very high state switching probabilities don’t make much sense from
a biological point of view.

max.concentration
the maximum allowed value for the turning angle concentration parameter for
CRWs [0, 1]. By default it is set to 0.99 because values higher than this (for
technical reasons) result in straight line paths, which is a technical artifact.

Details

This function defines the type of movement to be adjusted with adjustModel. Before choosing
the type, it is good practice to plot the real trajectory and visually assess which would be the most
adequate model to try. Currently included movement types are:

* CRW: single state CRW, fixed step length (1 parameter)

* RW.CRW: two state RW/CRW, fixed step length (3 parameters)

* CRW.CRW: two state CRW/CRW, fixed step length, (4 parameters)

* RW.CRW.sl: two state RW/CRW, variable step length, (5 parameters)

* CRW.CRW.sl: two state CRW/CRW, variable step length (6 parameters)

* CRW.CRW.CRW.s1: three state CRW/CRW/CRW, variable step length (12 parameters)

* CRW.RW.Rest.sl: three state CRW/RW/Rest, variable step length (7 parameters)

However, the user can easily write any custom function for addressing other movement types, see
the code for details.

Value

Returns a function that creates a species from a vector of parameter values. This function is normally
used to create species from the adjustModel results, see examples there.

See Also

adjustModel.
Examples
library(SiMRiv)
model <- speciesModel("RW.CRW.sl")

this shows the parameters that will be approximated
model

this creates a species with 2 states

RW and a CRW with correlation 0.9

with the switching probabilities RW->CRW = 0.01, CRW->RW = 0.05
and the step lengths RW = 15, CRW = 50.

species <- model(c(0.9, 0.01, 0.05, 15, 50))

22 state

state Define a movement state

Description

Defines a behavioral state to be used when creating species.

Usage
state(concentration, pwind = perceptualRange("circular”, @)
, steplen = 1, name = "")
state.Resting() # still state
state.RW() # uniform random walk (brownian motion),

independent of resistance
state.CRW(concentration) # correlated random walk,
independent of resistance

Arguments

concentration turning angle concentration, a value between O (uniform distribution resulting in
random walk) and 1 (only one value possible resulting in a straight line path)

pwind a perceptualRange definition

steplen the base (maximum) step length of this state in map units. Note that the actual
step length depends on the resistance in each step.

name the name of the state

Details

See Arith-methods for more convenient ways of setting parameters, instead of using state.

Value

An object of class state.

Note

The perceptual range radius and step length must be adequate to the resolution of the resistance
raster (if provided in simulations). If no raster will be provided, then the perceptual range is irrele-
vant, and the step length has solely a relative meaning (in relation to other states or other species).

For a review of different random walks, see Codling et al. (2008)

References

* Codling, E. A., Plank, M. J., & Benhamou, S. 2008. Random walk models in biology. Journal
of the Royal Society Interface, 5(25), 813-834.

transitionMatrix 23

See Also

species, perceptualRange, Arith-methods.

Examples
a correlated random walk influenced by landscape
state(0.97, perceptualRange(”cir"”, 500), 10, "CorrelatedRW")
the same, but using the shortcut form

state.CRW(0.97) * 500 + 10

transitionMatrix Define a state transition matrix

Description

Defines a state transition matrix to be used when creating species.

Usage

transitionMatrix(...)

Arguments

the probabilities that will form the matrix, see Details. If none given, returns a
1-element matrix (for one state only)

Details

The transition matrix (Markov matrix) is a square, non-symmetric matrix with all elements between
0 and 1, and whose rows must sum to 1 (but not columns). It defines the probability of the individual
changing from each behavioral state to another, and this is tested in each time step of the simulation,
hence probabilities should be small.

This function is just a helper to create such matrix. The arguments are probabilities given in the
following order (example for 3 states):

Probability of changing from:
state 1 —> state 2
state 1 —> state 3
state 2 —> state 1
state 2 —> state 3
state 3 —> state 1
state 3 —> state 2

The diagonal (probablity of remaining in the same state) is computed so that rows sum to 1.

24 transitionMatrix

Value

A numeric matrix.

See Also

species.

Examples

a 3-state transition matrix

transitionMatrix(0.01,0.02,0,0.03,0.0001,0)

Index

+x math speciesModel, 4, 6, 20
Arith-methods, 9 state, 9, 12, 20, 22
* methods
Arith-methods, 9 transitionMatrix, 16, 19, 20, 23
+ package

SiMRiv-package, 2
+ simulation
simulate, 15
* spatial
Arith-methods, 9
*, species,ANY-method (Arith-methods), 9
*,state,numeric-method (Arith-methods),
9
+,list,state-method (Arith-methods), 9
+,species,ANY-method (Arith-methods), 9
+,state,list-method (Arith-methods), 9
+,state,numeric-method (Arith-methods),
9
+,state,state-method (Arith-methods), 9
+-methods (Arith-methods), 9

adjustModel, 4, 10, 11, 16, 17, 20, 21
Arith-methods, 8

binCounts, 9
generationPlot, 6, 7, 10
nsgaz, 5, 6

par, 11
perceptualRange, 11, 20, 22, 23

rasterize, I3
resistanceFromShape, 12

sampleMovement, 14, 16, 17
SiMRiv (SiMRiv-package), 2
SiMRiv-package, 2
simulate, 3,7, 13-15, 15, 19, 20
species, 9, 15,17, 19, 22-24

25

	SiMRiv-package
	adjustModel
	Arith-methods
	binCounts
	generationPlot
	perceptualRange
	resistanceFromShape
	sampleMovement
	simulate
	species
	speciesModel
	state
	transitionMatrix
	Index

