Package 'RandomProjectionTest'

January 20, 2025

Type Package

Title Two-Sample Test in High Dimensions using Random Projection

Version 0.1.4

Description Performs the random projec-

tion test (Lopes et al., (2011) <doi:10.48550/arXiv.1108.2401>) for the one-sample and twosample hypothesis testing problem for equality of means in the high dimensional setting. We are interested in detecting the mean vector in the one-sample problem or the difference between mean vectors in the two-sample problem.

License GPL-3

Encoding UTF-8

Imports MASS, stats, glue

RoxygenNote 7.3.1

NeedsCompilation no

Author Juan Ortiz Author [aut, cre, cph, rev]

Maintainer Juan Ortiz Author < juan.ortiz1alonso@gmail.com>

Repository CRAN

Date/Publication 2024-06-04 09:44:51 UTC

Contents

random_projection_	_test .	 • •	•	•••	•	•••	•	• •	 •	 •	 •	• •	•	·	 •	·	•	 •	1

Index

4

random_projection_test

Two-Sample Test in High Dimensions using Random Projection

Description

This function performs the random projection test (Lopes et al., (2011) <arXiv:1108.2401>) for the one-sample and two-sample hypothesis testing problem for equality of means in the high dimensional setting. We are interested in detecting the mean vector in the one-sample problem or the difference between mean vectors in the two-sample problem.

Usage

```
random_projection_test(X, Y = NULL, mu0 = NULL, proj_dimension = NULL)
```

Arguments

Х	The n1-by-p observation matrix with numeric column variables.
Y	An optional n2-by-p observation matrix with numeric column variables. If NULL, one-sample test is conducted on X; otherwise, a two-sample test is conducted on X and Y.
muØ	The null hypothesis vector to be tested. If NULL, the default value is the 0 vector of lenght p.
proj_dimension	Dimension where to project the given samples. If NULL, the default value is floor($n/2$), where $n=n1$ if Y=NULL or $n=n1+n2-2$ if not, as in Lopes et al.

Details

Since the matrix used to project the data into a lower-dimension subset is a random matrix, obtaining the exactly same p-values in two repetitions is not likely. However, power function has been proved to perform adequately in the vast majority of settings.

Value

statistic	Value of the test's statistic T_k^2 .
p_value	The p-value of the test.
degrees_freedom	1
	The degrees of freedom used for the F distribution, returns $list(k, n-k+1)$.
null_value	Returns mu0.
method	Brief description of the test that has been carried out.

Author(s)

Juan Ortiz, <juan.ortiz1alonso@gmail.com>

References

Lopes, M. E., Jacob, L. J. & Wainwright, M. J. (2011). A More Powerful Two-Sample Test in High Dimensions using Random Projection. <arXiv:1108.2401>.

random_projection_test

Examples

```
set.seed(10086)
# One-sample test
n1=30; p=120
X = matrix(rnorm(n1*p), nrow = n1, ncol = p)
res1 = random_projection_test(X)
# Two-sample test
n2=65
Y = matrix(rnorm(n2*p), nrow = n2, ncol = p)
res2 = random_projection_test(X, Y)
# Specify a null hypothesis vector
res3 = random_projection_test(X, Y, mu0 = rep(0.1, p))
# Choose a projection_test(X, Y, mu0 = rep(0.1, p), proj_dimension = 4)
```

Index

 $\verb|random_projection_test, 1||$