Package ‘QGglmm’

January 20, 2025
Type Package

Title Estimate Quantitative Genetics Parameters from Generalised
Linear Mixed Models

Version 0.8.0
Date 2025-01-20

BugReports https://github.com/devillemereuil/qgglmm/issues

Description Compute various quantitative genetics parameters from a Generalised Lin-

ear Mixed Model (GLMM) estimates. Especially, it yields the observed phenotypic mean, phe-

notypic variance and additive genetic variance.
Imports cubature (>=1.4)
License GPL-2
NeedsCompilation no
Author Pierre de Villemereuil [aut, cre]
Maintainer Pierre de Villemereuil <pierre.de-villemereuil@mnhn.fr>
Repository CRAN
Date/Publication 2025-01-20 20:33:45 UTC

Contents
QGglmm-package e e 2
QGiCC . . . e e 4
QGlink.funcs e 6
QGmean e e e e e 8
QGMVICC e e e 10
QGmMVMEAN e e e e 12
QGMmVparamso e e e e e e e e e e 14
QGmvpred e e e e 17
QGMUVPST .« o o o e e 19
QGparams e e e e 21
QGpred e e 23
QGPST -« o e 26

https://github.com/devillemereuil/qgglmm/issues

2 QGgImm-package
QGuvardist e e e e e e 27
QGVALEXD « . v v o v e e e e e e 29
QGVCOV . . . e e e e 31

Index 34

QGglmm-package Estimate Quantitative Genetics Parameters from Generalised Linear
Mixed Models
Description
Compute various quantitative genetics parameters from a Generalised Linear Mixed Model (GLMM)
estimates. Especially, it yields the observed phenotypic mean, phenotypic variance and additive ge-
netic variance.
Details
The DESCRIPTION file:
Package: QGglmm
Type: Package
Title: Estimate Quantitative Genetics Parameters from Generalised Linear Mixed Models
Version: 0.8.0
Date: 2025-01-20
Authors@R: person(given = "Pierre", family = "de Villemereuil", role = c("aut", "cre"), email = "pierre.de-villemereuil @mi
BugReports: https://github.com/devillemereuil/qgglmm/issues
Description: ~ Compute various quantitative genetics parameters from a Generalised Linear Mixed Model (GLMM) estimate:
Imports: cubature (>=1.4)
License: GPL-2
Author: Pierre de Villemereuil [aut, cre]
Maintainer: Pierre de Villemereuil <pierre.de-villemereuil @ mnhn.fr>

Index of help topics:

QGglmm-package Estimate Quantitative Genetics Parameters from
Generalised Linear Mixed Models

QGicc Intra - Class Correlation coefficients (ICC) on
the observed data scale

QGlink. funcs List of functions according to a distribution
and a link function

QGmean Compute the phenotypic mean on the observed
scale

QGmvicc Intra - Class Correlation coefficients (ICC) on

QGmvmean

the observed data scale (multivariate
analysis).
Compute the multivariate phenotypic mean on the

QGgImm-package

QGmvparams
QGmvpred

QGmvpsi

QGparams
QGpred
QGpsi
QGvar.dist

QGvar.exp

QGvcov

observed scale

Quantitative Genetics parameters from GLMM
estimates (multivariate analysis).

Predict the evolutionary response to selection
on the observed scale

Compute a multivariate "Psi"” (used to compute
the additive genetic variance on the observed
scale).

Quantitative Genetics parameters from GLMM
estimates.

Predict the evolutionary response to selection
on the observed scale

Compute "Psi” (used to compute the additive
genetic variance on the observed scale).
Compute the distribution variance

Compute the variance of expected values (i.e.
the latent values after inverse-link
transformation.)

Compute the phenotypic variance-covariance
matrix on the observed / expected scale

This package gives the values on the observed scale for several quantitative genetics parameter
using estimates from a Generalised Linear Mixed Model (GLMM). If a fitness function is assumed
or measured, it also predicts the evolutionary response to selection on the observed scale.

The two main functions of this package are QGparams and QGpred. The first allows to compute the
quantitative genetics parameters on the observed scale for any given GLMM and its estimates. The
second allows to compute a predicted response to evolution on the observed scale using GLMM
estimates and an assumed/measured/inferred fitness function.

For some distribution/link models (e.g. Binomial/probit and Poisson and Negative Binomial with
logartihm or square-root link), a closed form solutions of the integrals computed by this package
are available. They are automatially used by QGparams and this function only.

Author(s)

Pierre de Villemereuil [aut, cre]

Maintainer: Pierre de Villemereuil <pierre.de-villemereuil @ mnhn.fr>

References

de Villemereuil, P., Schielzeth, H., Nakagawa, S., and Morrissey, M.B. (2016). General methods
for evolutionary quantitative genetic inference from generalised mixed models. Genetics 204, 1281-

1294.

4 QGicc

QGicc Intra - Class Correlation coefficients (ICC) on the observed data scale

Description

Function to estimate the Intra - Class Correlation coefficients (ICC, a.k.a. repeatability - like esti-
mates) on the observed scale based on estimates on the latent scale. For a specific variance compo-
nent, the function yields a data.frame which includes the phenotypic mean and variance, as well as
the variance component and associated ICC, on the observed data scale.

Usage

QGicc(mu = NULL, var.comp, var.p, model = "" width = 10, predict = NULL,
closed.form = TRUE, custom.model = NULL, n.obs = NULL, theta = NULL, verbose = TRUE)

Arguments

mu Latent intercept estimated from a GLMM (ignored if predict is not NULL). (nu-
meric of length 1)

var.comp Latent variance component for which ICC needs to be computed, estimated from
a GLMM. (numeric of length 1)

var.p Latent total phenotypic variance estimated from a GLMM. Usually, the sum
of the estimated variances of the random effects, plus the "residual" variance.
(numeric of length 1)

model Name of the used model, i.e. distribution.link. Ignored if custom.model is not
NULL. See QGlink. funcs for a complete list of model available. (character)

width Parameter for the integral computation. The integral is evaluated from -width *
sqrt(var.comp) to width * sqrt(var.comp). The default value is 10, which
should be sensible for most models. (numeric)

predict Optional vector of predicted values on the latent scale (i.e. matrix product Xb).
The latent predicted values must be computed while only accounting for the
fixed effects (marginal to the random effects). (numeric)

closed.form When available, should closed forms be used instead of integral computations?

(boolean)

custom.model If the model used is not available using the model argument, a list of functions
describing the model can be provided. (list of functions, see Details)

n.obs Number of "trials" for the "binomN" distribution. (numeric)

theta Dispersion parameter for the Negative Binomial distribution. The parameter
theta should be such as the variance of the distribution is mean + mean*2 /
theta. (numeric)

verbose Should the function be verbose? (boolean)

QGicc 5

Details

The function typically uses precise integral numerical approximation to compute parameters on the
observed scale, from latent estimates yielded by a GLMM. If closed form solutions for the integrals
are available, it uses them if closed. form = TRUE.

Only the most typical distribution/link function couples are implemented in the function. If you
used an "exotic" GLMM, you can use the custom.model argument. It should take the form of a
list of functions. The first function should be the inverse of the link function named inv.link,
the second function should be the "distribution variance" function named var . func and the third
function should be the derivative of the inverse link function named d.inv.link (see Example
below).

Some distributions require extra-arguments. This is the case for "binomN", which require the num-
ber of trials N, passed with the argument n. obs. The distribution "negbin" requires a dispersion pa-
rameter theta, such as the variance of the distribution is mean + mean*2 / theta (mean/dispersion
parametrisation).

If fixed effects (apart from the intercept) have been included in the GLMM, they can be included
as marginal predicted values, i.e. predicted values excluding the random effects, which can be
calculated as the matrix product Xb where X is the design matrix and b is the vector of fixed effects
estimates. To do so, provide the vector of marginal predicted values using the argument predict.
Note this can considerably slow down the algorithm, especially when no closed form is used.

Value

The function yields a data.frame containing the following values:

mean.obs Phenotypic mean on the observed scale.
var.obs Phenotypic variance on the observed scale.
var.comp.obs Component variance on the observed scale.

icc.obs ICC on the observed scale.

Author(s)

Pierre de Villemereuil & Michael B. Morrissey

See Also

QGparams, QGpred, QGlink. funcs, QGmean, QGvar.dist, QGvar.exp, QGpsi

Examples

Example using Poisson count data
Parameters

mu <- 0@

va <- 0.5

vm <- 0.2 # Maternal effect
vp <- 1

Simulating data 1 =mu + a + e
lat <- mu +

6 QGlink.funcs

rnorm(1000, @, sqrt(va)) +

rnorm(1000, @, sqrt(vm)) +

rnorm(1000, @, sqrt(vp - (va + vm)))
y <- rpois(1000, exp(lat))

Computing the broad - sense heritability

QGicc(mu = mu, var.p = vp, var.comp = va, model = "Poisson.log")
Computing the maternal effect ICC
QGicc(mu = mu, var.p = vp, var.comp = vm, model = "Poisson.log")

Using integral computation
QGicc(mu = mu, var.p = vp, var.comp = vm, model = "Poisson.log"”, closed.form = FALSE)
Note that the "approximation” is exactly equal to the results obtained with the closed form

Let's create a custom model

custom <- list(inv.link = function(x){exp(x)},
var.func = function(x){exp(x)},
d.inv.link = function(x){exp(x)})

QGicc(mu = mu, var.p = vp, var.comp = vm, custom.model = custom)
Again, exactly equal

Integrating over a posterior distribution
e.g. output from MCMCglmm named "model”
df <- data.frame(mu = model$Sol[, 'intercept'],
vm = model$VCV[, 'mother'],
vp = rowSums(model$VCV))
params <- apply(df, 1, function(row){
QGicc(mu = row$mu, var.comp = row$vm, var.p = row$vp, model = "Poisson.log")

ET T T

D

QGlink. funcs List of functions according to a distribution and a link function

Description

Function yielding different functions (inverse-link, variance function, derivative of the inverse-link)
according to a distribution and link function.

Usage

QGlink.funcs(name, n.obs = NULL, theta = NULL)

Arguments

name Name of the distribution.link couple. (character) Available models are :

* "Gaussian" Gaussian distribution with identity link (e.g. LMM)
* "binom1.probit" Binomial with 1 trial (binary data) with a probit link

QGlink.funcs 7

* "binomN.probit" Binomial with N tria with a probit link (require the pa-
rameter n.obs)

* "binoml.logit" Binomial with 1 trial (binary) with a logit link

* "binomN.logit" Binomial with N trial with a logit link (require the parame-
ter n.obs)

* "Poisson.log" Poisson distribution with a log link
* "Poisson.sqrt" Poisson distribution with a square-root link

* "negbin.log" Negative - Binomial distribution wiht a log link (require the
parameter theta)

* "negbin.sqrt" Negative - Binomial distribution with a square-root link (re-
quire the parameter theta)

» "ZIPoisson.log.logit" Zero-inflated Poisson distribution with a log link for
the Poisson part and logit link for the ZI part (compound distribution)

* "HuPoisson.log.logit" Hurdle Poisson distribution with a log link for the
Poisson part and logit link for the hurdle part (compound distribution)

* "ordinal" Multiple threshold model for ordinal categorical traits (require the
parameter cut.points)

n.obs Optional parameter required for "binomN" distributions (number of "trials").
See QGparams. (numeric)

theta Optional parameter required for "negbin" distributions (dispersion parameter).
See QGparams. (numeric)

Details

This function takes the name of a distribution.link couple and yields several important functions
such as the inverse-link function and its derivative, as well as the "distribution variance function".

The inverse-link function is the inverse function of the link function. For example, if the link
function is the natural logarithm (typically for a Poisson distribution), then the inverse-link function
is the exponential.

The distribution variance function is a function yielding the variance of the distribution for a given
latent trait. For a Poisson distribution, the variance is equal to the mean, hence the variance function
is equal to the inverse-link function. For a binomial distribution, the variance is N * p(l) * (1 - p(D)),
where p is the inverse-link function.

For some distributions, such as "binomN" and "negbin", some extra-parameters are required. The
"compound" distributions (for now, zero-inflated and hurdle Poisson) functions take a 2-rows input
instead of a vector (because they have two latent traits).

Value
This function yields a list of function:
inv.link Inverse function of the link function. (function)

var. func Distribution variance function. (function)

inv.link Derivative of the inverse-link function. (function)

8 QGmean

Author(s)

Pierre de Villemereuil & Michael B. Morrissey

See Also

QGparams, QGmvparams

Examples

Getting the functions for a Poisson.log model

QGlink.funcs("Poisson.log")

Note that because the variance is equal to the mean in a Poisson distribution
and the derivative of exp is exp

all functions are the same!

Getting the functions for a binom1.probit model
QGlink.funcs("binoml.probit")

The function QGparams automatically computes these functions

QGparams(mu = @, var.p = 2, var.a = 1, model = "binoml.logit")

Hence this is the same as using the custom.model argument with QGlink.funcs
QGparams(mu = @, var.p = 2, var.a = 1, custom.model = QGlink.funcs("binoml.logit"))

We can create our own custom set of functions
Let's create a custom model exactly identical to QGlink.funcs("binoml.logit")
custom <- list(inv.link = function(x){plogis(x)},

var.func = function(x){plogis(x) * (1 - plogis(x))},

d.inv.link = function(x){dlogis(x)3})

QGparams(mu = @, var.p = 2, var.a = 1, custom.model = custom)

QGmean Compute the phenotypic mean on the observed scale

Description

This function calculates the phenotypic mean on the observed scale from the latent mean and vari-
ance.

Usage

QGmean(mu = NULL, var, link.inv, predict = NULL, width = 10)

Arguments

mu Latent intercept estimated from a GLMM (ignored if predict is not NULL). (nu-
meric of length 1)

QGmean

var

link.inv

predict

width

Details

Latent total variance estimated from a GLMM. Usually, the sum of the estimated
variances of the random effects, plus the "residual" variance. (numeric of length

iy
Inverse function of the link function. (function)

Optional vector of predicted values on the latent scale (i.e. matrix product Xb).
The latent predicted values must be computed while only accounting for the
fixed effects (marginal to the random effects). (numeric)

Parameter for the integral computation. The integral is evaluated from mu -
width * sqrt(var) tomu + width *x sqrt(var). The default value is 10, which
should be sensible for most models. (numeric)

This function needs the latent population mean (mu) or the marginal predicted values (predict) and
the total latent variance (i.e. total latent variance var) to compute the observed phenotypic mean.
To do so, it also requires the inverse function of the link function.

For example, if the link function is the natural logarithm, the inverse-link function will be the
exponential. The inverse-link functions for many models are yielded by the QGlink. funcs function.

Contrary to QGparams, QGmean . obs never uses the closed form solutions, but always compute the

integrals.

Value

This function yields the phenotypic mean on the observed scale. (numeric)

Author(s)

Pierre de Villemereuil & Michael B. Morrissey

See Also

QGmvmean, QGparams, QGpred, QGlink. funcs, QGvar.dist, QGvar.exp, QGpsi

Examples

Computing the observed mean for a probit link
QGmean(mu = 0.3, var = 1, link.inv = pnorm)

The theoretical expectation is

1 - pnorm(@, 0.3, sqrt(1 + 1))

Or, using the QGlink.funcs function
QGmean(mu = 0.3, var = 1, link.inv = QGlink.funcs(name = "binoml.probit")$inv.1link)

Computing the observed mean for a logarithm link
QGmean(mu = 1, var = 1, link.inv = exp)
The theoretical expectation is

exp(1 + 0.5 % 1)

This computation is automatically performed by QGparams

10 QGmvicc

but directly using the closed form solution when available
QGparams(mu = 1, var.p = 1, var.a = 0.5, model = "Poisson.log")

QGmvicc Intra - Class Correlation coefficients (ICC) on the observed data scale
(multivariate analysis).

Description

Function to estimate the variance-covariance matrix of a variance component on the observed scale
based on estimates on the latent scale. Contrary to the univariate function, this one cannot use the
analytical closed forms and yields a list of paramaters instead of a data.frame.

Usage

QGmvicc(mu = NULL, vcv.comp, vcv.P, models, predict = NULL, rel.acc = 0.001,
width = 10, n.obs = NULL, theta = NULL, verbose = TRUE, compound = NULL, mask = NULL)

Arguments

mu Vector of latent intercepts estimated from a GLMM (ignored if predict is not
NULL). (numeric)

vCV.comp Component variance-covariance matrix (G-matrix - like). (numeric)

vev. P Total phenotypic variance-covariance matrix. Usually, the sum of all the esti-
mated variance-covariance matrices. (numeric)

models A vector containing the names of the model used or a list which elements contain
the list of the functions needed (inverse-link, distribution variance and derivative
of the inverse-link). See QGlink. funcs for a complete list of model available or
the naming of the list of functions. (character vector or list of lists of functions)

rel.acc Relative accuracy of the integral approximation. (numeric)

width Parameter for the integral computation. The default value is 10, which should
be sensible for most models. (numeric)

predict Optional matrix of predicted values on the latent scale (each trait in each col-
umn). The latent predicted values must be computed while only accounting for
the fixed effects (marginal to the random effects). (numeric)

n.obs Number of "trials" for each "binomN" distribution. (numeric, length equal to
the number of "binomN" models)

theta Dispersion parameter for the Negative Binomial distribution. The parameter

theta should be such as the variance of the distribution is mean + mean*2 /
theta. (numeric, length equal to the number of "negbin" models)

verbose Should the function be verbose? (boolean)

QGmvicc 11

compound A vector of two indices, or list of such vectors (e.g. 1list(c(1,2), c(4,5))),
providing the locations of "compound" distributions in the input (i.e. the dimen-
sions that need to be "merged" into one in the output). The input must be ordered
so that the first component (1 and 4 in the example above) is the latent trait for
positive values and the second (2 and 5 in the example above) is the latent trait
for the zero-component. Ignored if models is a character vector. (integer of
length 2, or list of such vectors)

mask Masking filter for removing predictions that don’t exist in the population (e.g.
female predictions for males for a sex-based bivariate model). Should the same
dimensions as predict and values should be FALSE when the predictions should
be filtered out.

Details

The function typically uses integral numerical approximation provided by the R2Cuba package to
compute multivariate quantitative genetics parameters on the observed scale, from latent estimates
yielded by a GLMM. It cannot use closed form solutions.

Only the most typical distribution/link function couples are implemented through the models argu-
ment. If you used an "exotic" GLMM, you can provide a list containg lists of functions correspond-
ing to the model. The list of functions should be implemented as is the output of QGlink. funcs, i.e.
three elements: the inverse link functions named inv.1link, the derivative of this function named
d.inv.link and the distribution variance named var . func (see Example below).

Some distributions require extra-arguments. This is the case for "binomN", which require the num-
ber of trials N, passed with the argument n. obs. The distribution "negbin" requires a dispersion pa-
rameter theta, such as the variance of the distribution is mean + mean*2 / theta (mean/dispersion
parametrisation). For now, the arguments n.obs and theta can be used for ONE distribution only.

If fixed effects (apart from the intercept) have been included in the GLMM, they can be included
through the argument predict as a matrix of the marginal predicted values, i.e. predicted val-
ues excluding the random effects, for each trait (one trait per column of the matrix, see Example
below).Note that computation can be extremely slow in that case.

Note that if "compound” distributions are included (such as "ZIPoisson.log.logit" or by using
the compound argument), the output will be of lesser dimension than the input.

Value

The function yields a list containing the following values:

mean.obs Vector of phenotypic means on the observed scale.
vcv.P.obs Phenotypic variance-covariance matrix on the observed scale.

vcv.comp.obs Component variance-covariance (G-matrix - like, but broad - sense) on the ob-
served scale.

Author(s)

Pierre de Villemereuil & Michael B. Morrissey

12 QGmvmean

See Also

QGmvparams, QGlink. funcs, QGmvmean, QGvcov, QGmvpsi

Examples

Example using a bivariate model (Binary trait/Gaussian trait)
Parameters

mu <- c(9, 1)

G <- diag(c(0.5, 2))

M <- diag(c(@.2, 1)) # Maternal effect VCV matrix

P <- diag(c(1, 4))

Broad - sense "G-matrix"” on observed data scale

Not run: QGmvicc(mu = mu, vcv.comp = G, vcv.P = P, models = c("binoml.probit”, "Gaussian"))
Maternal effect VCV matrix on observed data scale

Not run: QGmvicc(mu = mu, vcv.comp =M, vcv.P =P, models = c("binoml.probit”, "Gaussian"))
Reminder: the results are the same here because we have no correlation between the two traits

Defining the model "by hand” using the list
list.models = list(
modell = list(inv.link = function(x){pnorm(x)},
d.inv.link = function(x){dnorm(x)},
var.func = function(x){pnorm(x) * (1 - pnorm(x))}),
model2 = list(inv.link = function(x){x},
d.inv.link = function(x){1},
var.func = function(x){03})
)
Running the same analysis than above
Not run: QGmvicc(mu = mu, vcv.comp = M, vcv.P = P, models = list.models)

Using predicted values

Say we have 100 individuals

<- 100

Let's simulate predicted values

<- matrix(c(runif(n), runif(n)), ncol = 2)

Note that p has as many as columns as we have traits (i.e. two)

Multivariate analysis with predicted values

Not run: QGmvicc(predict = p, vcv.comp =M, vcv.P =P, models = c("binoml.probit”, "Gaussian"))
That can be a bit long to run!

* B O H S o H

QGmvmean Compute the multivariate phenotypic mean on the observed scale

Description

This function calculates the multivariate phenotypic mean on the observed scale from multivariate
latent mean and variance-covariance matrix.

QGmvmean 13

Usage

QGmvmean(mu = NULL, vcov, link.inv, predict = NULL,
rel.acc = 0.001, width = 10, compound = NULL, mask = NULL)

Arguments

mu Vector of latent intercepts estimated from a GLMM (ignored if predict is not
NULL). (numeric)

vcov Latent total phenotypic variance-covariance matrix estimated from a GLMM.
Usually, the sum of all the estimated variance-covariance matrices. (numeric)

link.inv Inverse functions of the link functions. This function should accept a vector and
yield a vector of the same length, see Details and Example below. (function)

predict Optional matrix of predicted values on the latent scale (each trait in each col-
umn). The latent predicted values must be computed while only accounting for
the fixed effects (marginal to the random effects). (numeric)

rel.acc Relative accuracy of the integral approximation. (numeric)

width Parameter for the integral computation. The default value is 10, which should
be sensible for most models. (numeric)

compound A vector of two indices, or list of such vectors (e.g. 1list(c(1,2), c(4,5))),
providing the locations of "compound" distributions in the input (i.e. the dimen-
sions that need to be "merged" into one in the output). The input must be ordered
so that the first component (1 and 4 in the example above) is the latent trait for
positive values and the second (2 and 5 in the example above) is the latent trait
for the zero-component. (integer of length 2, or list of such vectors)

mask Masking filter for removing predictions that don’t exist in the population (e.g.
female predictions for males for a sex-based bivariate model). Should the same
dimensions as predict and values should be FALSE when the predictions should
be filtered out.

Details

This function needs the multivariate latent population mean (mu) or the marginal predicted values
(predict) and the total latent variance-covariance matrix (vcov) to compute the observed pheno-
typic mean.

To do so, it also requires the inverse functions of the link functions (1ink.inv). For an analysis
with d traits, the function given to the link. inv argument should use a vector of length d and yield
a vector of length d (see Example below). When using compound, the functions corresponding to
the compound distribution(s) should accept a 2-rows input and yield a vector.

Value

This function yields the mutlivariate phenotypic mean on the observed scale. (numeric)

Author(s)

Pierre de Villemereuil & Michael B. Morrissey

14

QGmvparams

See Also

QGmean, QGmvparams, QGlink. funcs, QGvcov, QGmvpsi

Examples

#it

Example using a bivariate model (Binary trait/Gaussian trait)

Parameters

mu

<-c(o, 1)

P <- diag(c(1, 4))

Note: no phenotypic, nor genetic correlations, hence should be equal to univariate case!

Setting up the link functions

Note that since the use of "cubature” to compute the integrals,

the functions must use a matrix as input and yield a matrix as output,

each row corresponding to a trait

inv.links <- function(mat) {matrix(c(pnorm(mat[1, 1), mat[2, 1), nrow = 2, byrow = TRUE)}
probit link and identity link respectively

Computing the multivariate mean on observed scale

QGmvmean(mu = mu, vcov = P, link.inv = inv.links)

QGmean(mu = @, var = 1, link.inv = pnorm) # Same result than trait 1!

QGmean(mu = 1, var = 4, link.inv = function(x){x}) # Same result than trait 2!

Reminder: the results are the same here because we have no correlation between the two traits

QGmvparams Quantitative Genetics parameters from GLMM estimates (multivariate

analysis).

Description

Function to estimate the multivariate quantitative genetics parameters on the observed scale based
on estimates on the latent scale. Contrary to the univariate function, this one cannot use the analyt-
ical closed forms and yields a list of paramaters instead of a data.frame.

Usage
QGmvparams(mu = NULL, vcv.G, vcv.P, models, predict = NULL, rel.acc = 0.001,
width = 10, n.obs = NULL, theta = NULL, verbose = TRUE, compound = NULL, mask = NULL)

Arguments

mu Vector of latent intercepts estimated from a GLMM (ignored if predict is not

NULL). (numeric)
vev.G Genetic additive variance-covariance matrix (a.k.a. G-matrix). (numeric)
vev. P Total phenotypic variance-covariance matrix. Usually, the sum of all the esti-

mated variance-covariance matrices. (numeric)

QGmvparams 15

models A vector containing the names of the model used or a list which elements contain
the list of the functions needed (inverse-link, distribution variance and derivative
of the inverse-link). See QGlink. funcs for a complete list of model available or
the naming of the list of functions. (character vector or list of lists of functions)

rel.acc Relative accuracy of the integral approximation. (numeric)

width Parameter for the integral computation. The default value is 10, which should
be sensible for most models. (numeric)

predict Optional matrix of predicted values on the latent scale (each trait in each col-
umn). The latent predicted values must be computed while only accounting for
the fixed effects (marginal to the random effects). (numeric)

n.obs Number of "trials" for the "binomN" distribution. (numeric, length equal to the
number of "negbin" models)

theta Dispersion parameter for the Negative Binomial distribution. The parameter
theta should be such as the variance of the distribution is mean + mean*2 /
theta. (numeric, length equal to the number of "negbin" models)

verbose Should the function be verbose? (boolean)

compound A vector of two indices, or list of such vectors (e.g. 1list(c(1,2), c(4,5))),
providing the locations of "compound" distributions in the input (i.e. the dimen-
sions that need to be "merged" into one in the output). The input must be ordered
so that the first component (1 and 4 in the example above) is the latent trait for
positive values and the second (2 and 5 in the example above) is the latent trait
for the zero-component. Ignored if models is a character vector. (integer of
length 2, or list of such vectors)

mask Masking filter for removing predictions that don’t exist in the population (e.g.
female predictions for males for a sex-based bivariate model). Should the same
dimensions as predict and values should be FALSE when the predictions should
be filtered out.

Details

The function typically uses integral numerical approximation provided by the R2Cuba package to
compute multivariate quantitative genetics parameters on the observed scale, from latent estimates
yielded by a GLMM. It cannot use closed form solutions.

Only the most typical distribution/link function couples are implemented through the models argu-
ment. If you used an "exotic" GLMM, you can provide a list containg lists of functions correspond-
ing to the model. The list of functions should be implemented as is the output of QGlink. funcs, i.e.
three elements: the inverse link functions named inv.1link, the derivative of this function named
d.inv.link and the distribution variance named var . func (see Example below).

Some distributions require extra-arguments. This is the case for "binomN", which require the num-
ber of trials N, passed with the argument n. obs. The distribution "negbin" requires a dispersion pa-
rameter theta, such as the variance of the distribution is mean + mean*2 / theta (mean/dispersion
parametrisation). For now, the arguments n.obs and theta can be used for ONE distribution only.

If fixed effects (apart from the intercept) have been included in the GLMM, they can be included
through the argument predict as a matrix of the marginal predicted values, i.e. predicted values
excluding the random effects, for each trait (one trait per column of the matrix, see Example be-
low).Note this can considerably slow down the algorithm, especially when no closed form is used.

16 QGmvparams

Note that if "compound" distributions are included (such as "ZIPoisson.log.logit"” or by using
the compound argument), the output will be of lesser dimension than the input and the input must be
ordered so that the first component is the latent trait for positive values and the second is the latent
trait for the zero-component.

Value

The function yields a list containing the following values:

mean.obs Vector of phenotypic means on the observed scale.

vcv.P.obs Phenotypic variance-covariance matrix on the observed scale.

vev.G.obs Additive genetic variance-covariance (a.k.a. G-matrix) on the observed scale.
Author(s)

Pierre de Villemereuil & Michael B. Morrissey

See Also

QGparams, QGlink. funcs, QGmvmean, QGvcov, QGmvpsi

Examples

Example using a bivariate model (Binary trait/Gaussian trait)
Parameters

mu <- c(9, 1)

G <- diag(c(0.5, 2))

P <- diag(c(1, 4))

Note: no phenotypic, nor genetic correlations, hence should be equal to univariate case!

Multivariate analysis

QGmvparams(mu = mu, vcv.G = G, vcv.P = P, models = c("binoml.probit”, "Gaussian"))
QGparams(mu = @, var.a = 0.5, var.p = 1, model = "binoml.probit"”) # Consistent results!

Reminder: the results are the same here because we have no correlation between the two traits

Defining the model "by hand” using the list
list.models = list(
modell = list(inv.link = function(x){pnorm(x)3},
d.inv.link = function(x){dnorm(x)},
var.func = function(x){pnorm(x) * (1 - pnorm(x))}),
model2 = list(inv.link = function(x){x},
d.inv.link = function(x){1},
var.func = function(x){0})
)
Running the same analysis than above
QGmvparams(mu = mu, vcv.G = G, vcv.P = P, models = list.models) # Same results!

Using predicted values

Say we have 100 individuals

n <- 100

Let's simulate predicted values

QGmvpred 17

p <- matrix(c(runif(n), runif(n)), ncol = 2)

Note that p has as many as columns as we have traits (i.e. two)

Multivariate analysis with predicted values

Not run: QGmvparams(predict = p, vev.G =G, vcv.P =P, models = c("binom1.probit”, "Gaussian"))

QGmvpred Predict the evolutionary response to selection on the observed scale

Description

This function uses an assumed or measured fitness function to compute evolutionary response to
selection on the observed scale. To do so a latent fitness function must be provided to the function.
This fitness function is used to compute the evolutionary response on the latent scale.

Usage
QGmvpred(mu = NULL, vcv.G, vev.P, fit.func, d.fit.func,
predict = NULL, rel.acc = 0.001, width = 19,
verbose = TRUE, mask = NULL)
Arguments

mu Vector of latent intercepts estimated from a GLMM (ignored if predict is not
NULL). (numeric)

vev.G Genetic additive variance-covariance matrix (a.k.a. G-matrix). (numeric)

vev.P Total phenotypic variance-covariance matrix. Usually, the sum of all the esti-
mated variance-covariance matrices. (numeric)

fit.func Function giving the expected fitness on the observed scale for a given latent trait
(see Example). (function)

d.fit.func Derivative of the expected fitness to the latent trait. This function should return
a vector containing the partial derivative to each trait (see Example). (function)

rel.acc Relative accuracy of the integral approximation. (numeric)

width Parameter for the integral computation. The default value is 10, which should
be sensible for most models. (numeric)

predict Optional matrix of predicted values on the latent scale (each trait in each col-
umn). The latent predicted values must be computed while only accounting for
the fixed effects (marginal to the random effects). (numeric)

verbose Should the function be verbose? (boolean)

mask Masking filter for removing predictions that don’t exist in the population (e.g.

female predictions for males for a sex-based bivariate model). Should the same
dimensions as predict and values should be FALSE when the predictions should
be filtered out.

18 QGmvpred

Details

The function uses the latent fitness function (fitness.func) and latent quantitative genetics pa-
rameters to compute the expected selection differential and response on the latent scale.

There is no argument to describe the model used as it is already and implicitely contained in the
calculation of fit.func and d.fit.func (see Example below).

If fixed effects were included during the estimation of the quantitative genetics parameters, they can
be included as marginal predicted values, i.e. predicted values excluding the random effects, which
can be calculated as the matrix product Xb where X is the design matrix and b is the vector of fixed
effects estimates. To do so, provide the vector of marginal predicted values using the argument
predict. Note this will considerably slow down the algorithm.

The predictions can be transposed on the observed scale by using the QGmvmean function (see Ex-
ample below).

Value

The function yields a data.frame containing:

mean.lat.fitness
Average latent fitness. (numeric)

lat.grad Latent selection gradient. (numeric)

lat.sel Latent selection differential. (numeric)

lat.resp Latent evolutionary response to selection. (numeric)
Author(s)

Pierre de Villemereuil & Michael B. Morrissey

See Also

QGparams, QGlink. funcs, QGmean, QGvar.dist, QGvar.exp, QGpsi

Examples

Bivariate example with a binary trait and a Gaussian one

Assume a bivariate GLMM with Binomial(probit)/Gaussian distributions with:
mu <- c(0, 10)

G <- matrix(c(@.5, @, @, 1), nrow = 2)

P <- matrix(c(1, @, @, 2), nrow = 2)

Link functions
inv.links = function(vec){c(pnorm(vec[1]), vec[2]1)}

Creating the expected fitness function

i.e. expected fitness given a latent trait vector 1

Say if the binary trait is 1, then the fitness is 0.5 * "the Gaussian trait”
But if the binary trait is @, then the fitness is 0

lat.fit <- function(mat) {pnorm(mat[1, 1) * 0.5 x mat[2, 1}

Derivative of the above function

QGmvpsi 19

This function yields a vector which elements are the derivative according to each trait
d.lat.fit <- function(mat) {matrix(c(dnorm(mat[1, 1) * 0.5 *x mat[2, 1, pnorm(mat[1, 1) * 0.5),
nrow = 2,
byrow = TRUE)}

Predicting the latent evolutionary response
pred<- QGmvpred(mu = mu, vcv.P =P, vev.G = G, fit.func = lat.fit, d.fit.func = d.lat.fit)

Predicting the observed evolutionary response

Current observed phenotypic mean

QGmvmean(mu = mu, vcov = P, link.inv = inv.links)

Predicted observed phenotypic mean after selection

QGmvmean(mu = mu + pred$lat.resp, vcov = P, link.inv = inv.links)

QGmvpsi Compute a multivariate "Psi" (used to compute the additive genetic
variance on the observed scale).

Description

This function computes a multivariate version of the parameter "Psi" which relates the additive
genetic variance-covariance matrix on the latent scale to the additive genetic variance-covariance
matrix on the observed scale: G.obs = Psi %*% G %*% t(Psi)

Usage

QGmvpsi(mu = NULL, vcov, d.link.inv, predict = NULL,
rel.acc = 0.001, width = 10, compound = NULL, mask = NULL)

Arguments

mu Vector of latent intercepts estimated from a GLMM (ignored if predict is not
NULL). (numeric)

vcov Latent total phenotypic variance-covariance matrix estimated from a GLMM.
Usually, the sum of all the estimated variance-covariance matrices. (numeric)

d.link.inv Derivative of the inverse-link functions. This function should accept a vector and
yield a vector of the same length, see Details and Example below. (function)

predict Optional matrix of predicted values on the latent scale (each trait in each col-
umn). The latent predicted values must be computed while only accounting for
the fixed effects (marginal to the random effects). (numeric)

rel.acc Relative accuracy of the integral approximation. (numeric)

width Parameter for the integral computation. The default value is 10, which should

be sensible for most models. (numeric)

20 QGmvpsi

compound A vector of two indices, or list of such vectors (e.g. 1list(c(1,2), c(4,5))),
providing the locations of "compound" distributions in the input (i.e. the dimen-
sions that need to be "merged" into one in the output). The input must be ordered
so that the first component (1 and 4 in the example above) is the latent trait for
positive values and the second (2 and 5 in the example above) is the latent trait
for the zero-component. (integer of length 2, or list of such vectors)

mask Masking filter for removing predictions that don’t exist in the population (e.g.
female predictions for males for a sex-based bivariate model). Should the same
dimensions as predict and values should be FALSE when the predictions should
be filtered out.

Details

The multivariate parameter "Psi" is a diagonal matrix which elements are the average of the deriva-
tive of the inverse-link function. The additive genetic variance-covariance matrix on the latent scale
G is linked to the additive genetic variance-covariance matrix on the observed scale G.obs through
Psi: G.obs =Psi %*% G %*% t(Psi).

This function requires the derivatives of the inverse-link functions (d.1link.inv). For an analysis
with d traits, the function given to the d.link.inv argument should use a vector of length d and
yield a vector of length d (see Example below). When using compound, the function corresponding
to the compound distribution should accept a 2-rows input and yield a 2-rows output.

Value

This function yields the matrix "Psi". (numeric)

Author(s)

Pierre de Villemereuil & Michael B. Morrissey

See Also

QGpsi, QGmvparams, QGlink. funcs, QGvcov, QGmvpsi

Examples

Example using a bivariate model (Binary trait/Gaussian trait)
Parameters

mu <- c(9, 1)

G <- diag(c(0.5, 2))

P <- diag(c(1, 4))

Setting up the derivatives of the inverse-link functions

dinvs <- function(mat) {matrix(c(dnorm(mat[1, 1), rep(1, length(mat[2, 1))),
nrow = 2,
byrow = TRUE)}

The derivative of pnorm() is dnorm(), and the derivative of the identity is 1

Computing Psi
Psi <- QGmvpsi(mu = mu, vcov = P, d.link.inv = dinvs)

QGparams 21

Computing genetic additive variance-covariance matrix on the observed scale
Psi
G.obs <- Psi %*% G %*% t(Psi)

QGparams(mu = @, var.a = 0.5, var.p = 1, model = "binom1.probit")
Same additive variance than trait 1
Reminder: the results are the same here because we have no correlation between the two traits

QGparams Quantitative Genetics parameters from GLMM estimates.

Description

Function to estimate the quantitative genetics parameters on the observed scale based on estimates
on the latent scale. The function yields a data.frame which includes the phenotypic mean and
variance, as well as the additive genetic variance and heritability, on the observed scale.

Usage
QGparams(mu, var.a, var.p, model = "", width = 10, predict = NULL,
closed.form = TRUE, custom.model = NULL, n.obs = NULL,
cut.points = NULL, theta = NULL, verbose = TRUE)
Arguments

mu Latent intercept estimated from a GLMM (ignored if predict is not NULL). (nu-
meric of length 1)

var.a Latent additive genetic variance estimated from a GLMM. (numeric of length 1)

var.p Latent total phenotypic variance estimated from a GLMM. Usually, the sum
of the estimated variances of the random effects, plus the "residual" variance.
(numeric of length 1)

model Name of the used model, i.e. distribution.link. Ignored if custom.model is not
NULL. See QGlink. funcs for a complete list of model available. (character)

width Parameter for the integral computation. The integral is evaluated from mu -
width * sqrt(var.p) to mu + width * sqrt(var.p). The default value is 10,
which should be sensible for most models. (numeric)

predict Optional vector of predicted values on the latent scale (i.e. matrix product Xb).
The latent predicted values must be computed while only accounting for the
fixed effects (marginal to the random effects). (numeric)

closed. form When available, should closed forms be used instead of integral computations?

(boolean, ignored if model = "ordinal”)

custom.model If the model used is not available using the model argument, a list of functions
describing the model can be provided. (list of functions, see Details)

n.obs Number of "trials" for the "binomN" distribution. (numeric)

22 QGparams

cut.points Values for the "cut points" in the multiple threshold model ("ordinal"). Should
be a vector of length equal to the number of categories plus one, starting with
the value -Inf and ending with the value Inf. (numeric)

theta Dispersion parameter for the Negative Binomial distribution. The parameter
theta should be such as the variance of the distribution is mean + mean*2 /
theta. (numeric)

verbose Should the function be verbose? (boolean)

Details

The function typically uses precise integral numerical approximation to compute quantitative ge-
netics parameters on the observed scale, from latent estimates yielded by a GLMM. If closed form
solutions for the integrals are available, it uses them if closed.form = TRUE.

Only the most typical distribution/link function couples are implemented in the function. If you
used an "exotic" GLMM, you can use the custom.model argument. It should take the form of a
list of functions. The first function should be the inverse of the link function named inv.link,
the second function should be the "distribution variance" function named var. func and the third
function should be the derivative of the inverse link function named d.inv.link (see Example
below).

Some distributions require extra-arguments. This is the case for "binomN", which require the num-
ber of trials N, passed with the argument n. obs. The distribution "negbin" requires a dispersion pa-
rameter theta, such as the variance of the distribution is mean + mean*2 / theta (mean/dispersion
parametrisation).

If fixed effects (apart from the intercept) have been included in the GLMM, they can be included
as marginal predicted values, i.e. predicted values excluding the random effects, which can be
calculated as the matrix product Xb where X is the design matrix and b is the vector of fixed effects
estimates. To do so, provide the vector of marginal predicted values using the argument predict.
Note this can considerably slow down the algorithm, especially when no closed form is used.

"Compound" distributions such as zero-inflated and hurdle Poisson cannot be used with QGparams,
but should be used with QGmvparams instead, because they are multivariate.

Ordinal model is different from the other models, because it yields multivariate inference on the ob-
served data scale, even though the latent scale is not multivariate. As a consequence, this model can
only be accessed using the function QGparams and has an output similar to the one of QGmvparams.

Value

The function yields a data.frame containing the following values:

mean.obs Phenotypic mean on the observed scale.
var.obs Phenotypic variance on the observed scale.
var.a.obs Additive genetic variance on the observed scale.
h2.obs Heritability on the observed scale.

Author(s)

Pierre de Villemereuil & Michael B. Morrissey

QGpred 23

See Also

QGmvparams, QGpred, QGlink. funcs, QGmean, QGvar.dist, QGvar.exp, QGpsi

Examples

Example using binary data
Parameters

mu <- @
va <- 1
vp <- 2

Simulating data 1 =mu + a + e
lat<- mu + rnorm(1000, @, sqrt(va)) + rnorm(1000, @, sqrt(vp - va))
y<- rbinom(1000, 1, pnorm(lat))

Expected results

QGparams(mu = @, var.p = 2, var.a = 1, model = "binoml.probit")
Simulated results for mean and variance

mean(y)

var(y)

Using integral approximations
QGparams(mu = @, var.p = 2, var.a = 1, model = "binoml.probit”, closed.form = FALSE)
Note that the approximation is exactly equal to the results obtained with the closed form

Let's create a custom model

custom <- list(inv.link = function(x){pnorm(x)},
var.func = function(x){pnorm(x) * (1 - pnorm(x))},
d.inv.link = function(x){dnorm(x)3})

QGparams(mu = @, var.p = 2, var.a = 1, custom.model = custom)
Using an ordinal model (with 4 categories)

QGparams(mu = 0.1, var.a=1, var.p = 2, cut.points = c(- Inf, @, 0.5, 1, Inf), model = "ordinal")
Note the slightly different output (see QGmvparams)

Integrating over a posterior distribution

e.g. output from MCMCglmm named "model”

df <- data.frame(mu = model$Sol[, 'intercept'],

va = model$VCV[, 'animal'],

vp = rowSums(model$VCV))

params <- apply(df, 1, function(row){

QGparams(mu = row$mu, var.a = row$va, var.p = row$vp, model = "Poisson.log")
#3)

QGpred Predict the evolutionary response to selection on the observed scale

24 QGpred

Description

This function uses an assumed or measured fitness function to compute evolutionary response to
selection on the observed scale. To do so a latent fitness function must be provided to the function.
This fitness function is used to compute the evolutionary response on the latent scale.

Usage
QGpred(mu = NULL, var.a, var.p, fit.func, d.fit.func, width = 10,
predict = NULL, verbose = TRUE)
Arguments
mu Latent intercept estimated from a GLMM (set to 0 if predict is not NULL).
(numeric of length 1)
var.a Latent additive genetic variance estimated from a GLMM. (numeric of length 1)
var.p Latent total phenotypic variance estimated from a GLMM. Usually, the sum
of the estimated variances of the random effects, plus the "residual" variance.
(numeric of length 1)
fit.func Function giving the expected fitness on the observed scale for a given latent trait
(see Example). (function)
d.fit.func Derivative of the expected fitness to the latent trait (see Example). (function)
width Parameter for the integral computation. The integral is evaluated from mu -
width * sqrt(var.p) to mu + width * sqrt(var.p). The default value is 10,
which should be sensible for most models. (numeric)
predict Optional vector of predicted values on the latent scale (i.e. matrix product Xb).
The latent predicted values must be computed while only accounting for the
fixed effects (marginal to the random effects). (numeric)
verbose Should the function be verbose? (boolean)
Details

The function uses the latent fitness function (fit. func) and latent quantitative genetics parameters
to compute the expected selection differential and response on the latent scale.

There is no argument to describe the model used as it is already and implicitely contained in the
calculation of fit. func.

If fixed effects were included during the estimation of the quantitative genetics parameters, they can
be included as marginal predicted values, i.e. predicted values excluding the random effects, which
can be calculated as the matrix product Xb where X is the design matrix and b is the vector of fixed
effects estimates. To do so, provide the vector of marginal predicted values using the argument
predict. Note this will considerably slow down the algorithm.

The predictions can be transposed on the observed scale by using the QGmean function (see Example
below).

QGpred 25
Value
The function yields a data.frame containing:

mean.lat.fitness
Average latent fitness. (numeric)

lat.grad Latent selection gradient. (numeric)

lat.sel Latent selection differential. (numeric)

lat.resp Latent evolutionary response to selection. (numeric)
Author(s)

Pierre de Villemereuil & Michael B. Morrissey

See Also

QGparams, QGlink. funcs, QGmean, QGvar.dist, QGvar.exp, QGpsi

Examples

Example with binary traits and a fitness measurement

Let's assume we dispose of a binary trait measurement

and associated fitness of trait @ (say 1) and trait 1 (say 1.86)

We further assume a GLMM with Binomial distribution and probit link with:
mu <- -0.1

va <- 2

vp <- 2.5 # note that the latent heritability is very high

Creating the latent fitness function

i.e. expected fitness given a latent trait 1

We have a trait 1 with probability pnorm(l) with fitness 1.86

We have a trait @ with probability (1 - pnorm(l)) with fitness 1
lat.fit<- function(1){(1 - pnorm(1l)) * 1 + pnorm(1l) * 1.86}

Derivate of the fitnes function

d.lat.fit<- function(l){- dnorm(1l) * 1 + dnorm(l) * 1.86%}

Predicting the latent evolutionary response
pred <- QGpred(mu = mu, var.p = vp, var.a = va, fit.func = lat.fit, d.fit.func = d.lat.fit)

Predicting the observed evolutionary response

Current observed phenotypic mean

QGmean(mu = mu, var = vp, link.inv = QGlink.funcs("binoml.probit”)$inv.link)

Predicted observed phenotypic mean after selection

QGmean(mu = mu + pred$lat.resp, var = vp, link.inv = QGlink.funcs("binoml1.probit”)$inv.1link)

26 QGpsi

QGpsi Compute "Psi" (used to compute the additive genetic variance on the
observed scale).

Description
This function computes the parameter "Psi" which relates the additive genetic variance on the latent
scale to the additive genetic variance on the observed scale: Va.obs = (Psi*2) * Va

Usage

QGpsi(mu = NULL, var, d.link.inv, predict = NULL, width = 10)

Arguments
mu Latent intercept estimated from a GLMM (set to O if predict is not NULL).
(numeric of length 1)
var Latent total phenotypic variance estimated from a GLMM. Usually, the sum
of the estimated variances of the random effects, plus the "residual” variance.
(numeric of length 1)
d.link.inv Derivative of the inverse-link function. (function)
predict Optional vector of predicted values on the latent scale (i.e. matrix product Xb).
The latent predicted values must be computed while only accounting for the
fixed effects (marginal to the random effects). (numeric)
width Parameter for the integral computation. The integral is evaluated from mu -
width * sqrt(var) tomu +width * sqrt(var). The default value is 10, which
should be sensible for most models. (numeric)
Details

The parameter "Psi" is the average of the derivative of the inverse-link function. The additive
genetic variance on the observed scale is linked to the additive genetic variance on the latent scale
by : Va.obs = (Psi”2) * Va.lat.

Value

This function yields the "Psi" parameter. (numeric)

Author(s)

Pierre de Villemereuil & Michael B. Morrissey

See Also

QGmvpsi, QGparams, QGpred, QGlink. funcs, QGmean, QGvar.dist, QGvar.exp

QGvar.dist 27

Examples

Example using binom1.probit model

mu <- 0
va <- 1
vp <- 2

The inverse-link for a probit is the CDF of a standard Gaussian
Hence its derivative is the PDF of a standard Gaussian
dinv <- function(x){dnorm(x)}

Computing Psi

Psi <- QGpsi(mu = @, var = 2, d.link.inv = dinv)

Computing additive variance on the observed scale
(Psi*2) * va

This function is used by QGparams to obtain var.a.obs
QGparams(mu = @, var.p = vp, var.a = va, model = "binom1.probit")
Same results as above!

QGvar.dist Compute the distribution variance

Description

This function computes the variance emerging from the error distribution around the individual
expected value. This variance, added to the variance of the individual expected values themselves
(see QGvar. exp) yields the total observed phenotypic variance.

Usage

QGvar.dist(mu = NULL, var, var.func, predict = NULL, width = 10)

Arguments

mu Latent intercept estimated from a GLMM (ignored if predict is not NULL). (nu-
meric of length 1)

var Latent total phenotypic variance estimated from a GLMM. Usually, the sum
of the estimated variances of the random effects, plus the "residual" variance.
(numeric of length 1)

var.func Function giving the variance of the distribution according to a given latent value.
(function)

predict Optional vector of predicted values on the latent scale (i.e. matrix product Xb).
The latent predicted values must be computed while only accounting for the
fixed effects (marginal to the random effects). (numeric)

width Parameter for the integral computation. The integral is evaluated from mu -

width * sqrt(var) tomu +width * sqrt(var). The default value is 10, which
should be sensible for most models. (numeric)

28 QGvar.dist

Details

The distribution variance is the part of the observed variance emerging from the error distribution.
It is calculated as an average error variance over all possible latent values. The distribution variance
added to the variance of the expected values gives the total phenotypic variance on the observed
scale.

The variance function (var.func) is a function giving the variance of the error distribution of the
GLMM according to a given latent value.

Using a Poisson distribution with a logarithm link, this function is exp(x), because the variance of
a Poisson is its mean. Using a Negative Binomial distribution with a logarithm link, this function
will now be exp(x) + exp(2 * x) / theta. Note that the dispersion parameter theta is necessary
for a Negative Binomial distribution.

The var. func function is yielded by QGlink.funcs according to a given distribution.link model
(see Example below).

Contrary to QGparams, QGvar.exp never uses the closed form solutions, but always compute the
integrals.
Value

This function yields the distribution variance. (numeric)

Author(s)

Pierre de Villemereuil & Michael B. Morrissey

See Also

QGvar.exp, QGparams, QGpred, QGlink. funcs, QGmean, QGpsi

Examples

Example using Poisson.log model
mu <- 1

va <- 0.2

vp <- 0.5

The variance function is simply the inverse-link function
because the variance of a Poisson is its mean
varfunc <- function(x) { exp(x) }

QGvar.dist(mu = mu, var = vp, var.func = varfunc)

The QGlink.funcs gives a ready - to - use var.func
funcs <- QGlink.funcs(name = "Poisson.log")

Calculating the distribution variance
vdist <- QGvar.dist(mu = mu, var = vp, var.func = funcs$var.func)

vdist # Same value as above

QGvar.exp 29

Calculating the variance of the expected values
vexp <- QGvar.exp(mu = mu, var = vp, link.inv = funcs$inv.link)

The phenotypic variance on the observed scale is then:
vexp + vdist

This computation is automatically performed by QGparams

but directly using the closed form solutions when available
QGparams(mu = mu, var.p = vp, var.a = va, model = "Poisson.log")
var.obs is equal to the sum above

QGvar.exp Compute the variance of expected values (i.e. the latent values after
inverse-link transformation.)

Description

This function computes the variance of the expected values, i.e. the variance of the latent values after
transformation through the inverse-link function. This variance, added to the distribution variance,
yields to the phenotypic variance on the observed scale.

Usage

QGvar.exp(mu = NULL, var, link.inv, obs.mean = NULL, predict = NULL, width = 10)

Arguments

mu Latent intercept estimated from a GLMM (ignored if predict is not NULL). (nu-
meric of length 1)

var Latent total phenotypic variance estimated from a GLMM. Usually, the sum
of the estimated variances of the random effects, plus the "residual" variance.
(numeric of length 1)

link.inv Inverse function of the link function. (function)

obs.mean Optional parameter giving the phenotypic mean on the observed scale. Auto-
matically computed if not provided. (numeric)

predict Optional vector of predicted values on the latent scale (i.e. matrix product Xb).
The latent predicted values must be computed while only accounting for the
fixed effects (marginal to the random effects). (numeric)

width Parameter for the integral computation. The integral is evaluated from mu -

width * sqrt(var) tomu +width * sqrt(var). The default value is 10, which
should be sensible for most models. (numeric)

30 QGvar.exp

Details

The variance of the expected values is the variance that directly arise from the variance of the latent
values, but after transformation through the inverse-link function. For example, using a logarithm
link, this is the variance of exp(l) where 1 is the latent trait.

To compute the variance, the function needs the phenotypic mean on the observed scale. If this
was already computed, it can be provided using the optional argument obs.mean, which will save
computing time. Otherwise (default), the function will compute the mean on the observed scale
before computing the variance.

This variance, when added to the distribution variance (see QGvar.dist) yields the phenotypic
variance on the observed scale.

The function required for link.inv is yielded by QGlink.funcs according to a given distribu-
tion.link model (see Example below).

Contrary to QGparams, QGvar.dist never uses the closed form solutions, but always compute the
integrals.

Value

This function yields the variance of the expected values. (numeric)

Author(s)

Pierre de Villemereuil & Michael B. Morrissey

See Also
QGvar.dist, QGparams, QGpred, QGlink. funcs, QGmean, QGpsi

Examples

Example using Poisson.log model

mu <- 1
va <- 0.2
vp <- 0.5

The inverse-link for a logarithm link is the exponential
inv.link<- function(x){exp(x)}

We can then calculate the variance of expected values
QGvar.exp(mu = mu, var = vp, link.inv = inv.link)

The mean on the observed scale can be computed beforehand
y_bar <- QGmean(mu = mu, var = vp, link.inv = inv.link)
QGvar.exp(mu = mu, var = vp, obs.mean = y_bar, link.inv = inv.link)

The QGlink.funcs gives a ready - to - use inverse-link function
funcs<- QGlink.funcs(name = "Poisson.log")

Calculating the distribution variance
vexp <- QGvar.exp(mu = mu, var = vp, obs.mean = y_bar, link.inv = funcs$var.func)

QGvcov 31

vexp # Same value as above

Calculating the associated distribution variance
vdist <- QGvar.dist(mu = mu, var = vp, var.func = funcs$var.func)

The phenotypic variance on the observed scale is then:
vexp + vdist

This computation is automatically performed by QGparams

but directly using the closed form solutions when available
QGparams(mu = mu, var.p = vp, var.a = va, model = "Poisson.log")
var.obs is equal to the sum above

QGvcov Compute the phenotypic variance-covariance matrix on the observed
/ expected scale

Description

This function computes the total phenotypic variance-covariance matrix on the observed or expected
scales.

Usage

QGvcov(mu = NULL, vcov, link.inv, var.func, mvmean.obs = NULL,
predict = NULL, rel.acc = 0.001, width = 10,
exp.scale = FALSE, compound = NULL, mask = NULL)

Arguments

mu Vector of latent intercepts estimated from a GLMM (ignored if predict is not
NULL). (numeric)

vcov Latent total phenotypic variance-covariance matrix estimated from a GLMM.
Usually, the sum of all the estimated variance-covariance matrices. (numeric)

link.inv Inverse functions of the link functions. This function should accept a vector and
yield a vector of the same length, see Details and Example below. (function)

var. func Function giving the variance function for each trait. This function should accept
a vector and yield a vector of the same length, see Details and Example below.
(function)

mvmean.obs Optional parameter giving the multivariate phenotypic mean on the observed
scale. Automatically computed if not provided. (numeric)

predict Optional matrix of predicted values on the latent scale (each trait in each col-

umn). The latent predicted values must be computed while only accounting for
the fixed effects (marginal to the random effects). (numeric)

rel.acc Relative accuracy of the integral approximation. (numeric)

32

width

exp.scale

compound

mask

Details

QGvcov

Parameter for the integral computation. The default value is 10, which should
be sensible for most models. (numeric)

Should the variance-covariance matrix be computed on the expected scale? FALSE
by default, which means the variance-covariance matrix is computed on the ob-
served scale. (boolan)

A vector of two indices, or list of such vectors (e.g. 1list(c(1,2), c(4,5))),
providing the locations of "compound" distributions in the input (i.e. the dimen-
sions that need to be "merged" into one in the output). The input must be ordered
so that the first component (1 and 4 in the example above) is the latent trait for
positive values and the second (2 and 5 in the example above) is the latent trait
for the zero-component. (integer of length 2, or list of such vectors)

Masking filter for removing predictions that don’t exist in the population (e.g.
female predictions for males for a sex-based bivariate model). Should the same
dimensions as predict and values should be FALSE when the predictions should
be filtered out.

This function needs the multivariate latent population mean (mu) or the marginal predicted val-
ues (predict) and the total latent variance-covariance matrix (vcov) to compute the phenotypic
variance-covariance matrix on the observed scale (or on the expected scale if exp.scale is TRUE).

To do so, it also requires the inverse functions of the link functions (1ink.inv) and the distribution
variance functions (var. func). For an analysis with d traits, the function given to these arguments
should use a vector of length d and yield a vector of length d (see Example below). When using
compound, the functions corresponding to the compound distribution(s) should accept a 2-rows
input and yield a vector.

Value

This function yields the phenotypic variance-covariance on the observed or expected scale. (nu-

meric)

Author(s)

Pierre de Villemereuil & Michael B. Morrissey

See Also

QGvar.exp, QGvar.dist, QGmvparams, QGlink. funcs, QGmvpsi

Examples

Example using a bivariate model (Binary trait/Gaussian trait)

Parameters
mu <- c(0, 1)

P <- diag(c(1, 4))

Note: no phenotypic, nor genetic correlations, hence should be equal to univariate case!

QGvcov 33

Setting up the link functions

Note that since the use of "cubature” to compute the integrals,

the functions must use a matrix as input and yield a matrix as output,

each row corresponding to a trait

inv.links <- function(mat) {matrix(c(pnorm(mat[1, 1), mat[2, J), nrow = 2, byrow = TRUE)}

Setting up the distribution variance functions

var.funcs <- function(mat) {matrix(c(pnorm(mat[1, 1) * (1 - pnorm(mat[1, 1)), @ * mat[2, 1),
nrow = 2,
byrow = TRUE)}

The first row is p * (1 - p) (variance of a binomial)

The second row is @ because no extra distribution is assumed for a Gaussian trait

Computing the multivariate mean on observed scale

Phenotypic VCV matrix on observed scale

QGvcov(mu = mu, vcov = P, link.inv = inv.links, var.func = var.funcs)

Phenotypic VCV matrix on the expected scale

QGvcov(mu = mu, vcov = P, link.inv = inv.links, var.func = var.funcs, exp.scale = TRUE)

QGvar.exp(mu = @, var = 1, link.inv = pnorm) # Same variance on the expected scale
QGvar.exp(mu = @, var = 1, link.inv = pnorm) +
QGvar.dist(mu = @, var = 1, var.func = function(x){pnorm(x) * (1 - pnorm(x))})
Same variance on the observed scale
Reminder: the results are the same here because we have no correlation between the two traits

Index

QGglmm (QGglmm-package), 2

QGglmm-package, 2

QGicc, 4

QGlink.funcs, 4, 5,6, 9-12, 14-16, 18, 20,
21,23, 25, 26, 28, 30, 32

QGmean, 5, 8, 14, 18, 23-26, 28, 30

QGmvicc, 10

QGmvmean, 9, 12,12, 16, 18

QGmvparams, 8, 12, 14, 14, 20, 22, 23, 32

QGmvpred, 17

QGmvpsi, 12, 14, 16, 19, 20, 26, 32

QGparams, 3, 5, 7-9, 16, 18, 21, 25, 26, 28, 30

QGpred, 3, 5, 9, 23, 23, 26, 28, 30

QGpsi, 5, 9, 18, 20, 23, 25, 26, 28, 30

QGvar.dist, 5, 9, 18, 23, 25, 26, 27, 30, 32

QGvar.exp, 5, 9, 18, 23, 25-28, 29, 32

QGvcov, 12, 14, 16, 20, 31

34

	QGglmm-package
	QGicc
	QGlink.funcs
	QGmean
	QGmvicc
	QGmvmean
	QGmvparams
	QGmvpred
	QGmvpsi
	QGparams
	QGpred
	QGpsi
	QGvar.dist
	QGvar.exp
	QGvcov
	Index

