
Package ‘PIE’
January 27, 2025

Type Package

Title A Partially Interpretable Model with Black-Box Refinement

Version 1.0.0

Date 2025-01-20

Description Implements a novel predictive model, Partially Interpretable Estima-
tors (PIE), which jointly trains an interpretable model and a black-
box model to achieve high predictive performance as well as partial model. See the pa-
per, Wang, Yang, Li, and Wang (2021) <doi:10.48550/arXiv.2105.02410>.

Depends R (>= 3.5.0), gglasso, xgboost

Imports splines, stats

Encoding UTF-8

License GPL-2

VignetteBuilder knitr

Suggests knitr, rmarkdown

Repository CRAN

RoxygenNote 7.3.2

NeedsCompilation no

Author Tong Wang [aut],
Jingyi Yang [aut, cre],
Yunyi Li [aut],
Boxiang Wang [aut]

Maintainer Jingyi Yang <jy4057@stern.nyu.edu>

Date/Publication 2025-01-27 18:30:09 UTC

Contents
data_process . 2
MAE . 4
PIE . 5
PIE_fit . 6

1

https://doi.org/10.48550/arXiv.2105.02410

2 data_process

predict.PIE . 7
RPE . 9
sparsity_count . 10
winequality . 11

Index 13

data_process data_process: process tabular data into the format for the PIE model.

Description

This function take tabular dataset and meta-data (such as numerical columns and categorical columns),
then output k fold cross validation dataset with splines on numerical features in order to capture the
non-linear relationship among numerical features. Within this function, numerical features and tar-
get variable are normalized and reorganize into order: (numerical features, categorical features,
target).

Usage

data_process(
X,
y,
num_col,
cat_col,
y_col,
k = 5,
validation_rate = 0.2,
spline_num = 5,
random_seed = 1

)

Arguments

X Feature columns in dataset

y Target column in dataset

num_col Index of the columns that are numerical features

cat_col Index of the columns that are categorical features.

y_col Index of the column that is the response.

k Number of fold for cross validation dataset setup. By default ‘k = 5‘.
validation_rate

Validation ratio within training dataset. By default ‘validation_rate = 0.2‘

spline_num The degree of freedom for natural splines. By default ‘spline_num = 5‘

random_seed Random seed for cross validation data split. By default ‘random_seed = 1‘

data_process 3

Details

The function generates a suitable cross-validation dataset for PIE model. It contains training dataset,
validation dataset, testing dataset and also group indicator for group lasso. When ‘k=5‘, the train-
ing testing splits in 80/20. When ‘validation_rate=0.2‘, 20 Setting ‘validation_rate=0‘ will only
generate training and testing data without validation data.

Value

A list containing:

spl_train_X A list of splined training dataset where all numerical features are splined into
‘spline_num‘ columns. The number of element in list equals ‘k‘ the number of
fold.

orig_train_X A list of original training dataset where the numerical features remains the orig-
inal format. The number of element in list equals ‘k‘ the number of fold.

train_y A list of vectors representing target variable for training dataset. The number of
element in list equals ‘k‘ the number of fold.

spl_validation_X

A list of splined validation dataset where all numerical features are splined into
‘spline_num‘ columns. The number of element in list equals ‘k‘ the number of
fold. It could be None, when ‘validation_rate == 0‘

orig_validation_X

A list of original validation dataset where the numerical features remains the
original format. The number of element in list equals ‘k‘ the number of fold. It
could be None, when ‘validation_rate == 0‘

validation_y A list of vectors representing target variable for validation dataset. The num-
ber of element in list equals ‘k‘ the number of fold. It could be None, when
‘validation_rate == 0‘

spl_test_X A list of splined testing dataset where all numerical features are splined into
‘spline_num‘ columns. The number of element in list equals ‘k‘ the number of
fold.

orig_test_X A list of original testing dataset where the numerical features remains the origi-
nal format. The number of element in list equals ‘k‘ the number of fold.

test_y A list of vectors representing target variable for testing dataset. The number of
element in list equals ‘k‘ the number of fold.

lasso_group A vector of consecutive integers describing the grouping of the coefficients

Examples

Load the training data
data("winequality")

Which columns are numerical?
num_col <- 1:11
Which columns are categorical?
cat_col <- 12
Which column is the response?

4 MAE

y_col <- ncol(winequality)

Data Processing (the first 200 rows are sampled for demonstration)
dat <- data_process(X = as.matrix(winequality[1:200, -y_col]),

y = winequality[1:200, y_col],
num_col = num_col, cat_col = cat_col, y_col = y_col)

MAE MAE: Mean Absolute Error

Description

This function calculates the mean absolute error between the predicted values and the true values.
The formula for MAE is:

MAE =
1

n

∑
i

|yi − ŷi|

Usage

MAE(pred, true_label)

Arguments

pred The predicted values of the dataset.

true_label The actual target values of the dataset.

Value

A numeric value representing the mean absolute error (MAE).

Examples

Load the training data
data("winequality")

Which columns are numerical?
num_col <- 1:11
Which columns are categorical?
cat_col <- 12
Which column is the response?
y_col <- ncol(winequality)

Data Processing (the first 200 rows are sampled for demonstration)
dat <- data_process(X = as.matrix(winequality[1:200, -y_col]),

y = winequality[1:200, y_col],
num_col = num_col, cat_col = cat_col, y_col = y_col)

Fit a PIE model

PIE 5

fold <- 1
fit <- PIE_fit(

X = dat$spl_train_X[[fold]],
y = dat$train_y[[fold]],
lasso_group = dat$lasso_group,
X_orig = dat$orig_train_X[[fold]],
lambda1 = 0.01, lambda2 = 0.01, iter = 5, eta = 0.05, nrounds = 200

)

Prediction
pred <- predict(fit,

X = dat$spl_validation_X[[fold]],
X_orig = dat$orig_validation_X[[fold]]

)

Validation
val_rrmae_test <- MAE(pred$total, dat$validation_y[[fold]])

PIE PIE: A Partially Interpretable Model with Black-box Refinement

Description

The PIE package implements a novel Partially Interpretable Model (PIE) framework introduced
by Wang et al. <arxiv:2105.02410>. This framework jointly train an interpretable model and a
black-box model to achieve high predictive performance as well as partial model transparency.

Functions

- predict.PIE(): Main function for generating predictions with the PIE model on dataset. - PIE():
Main function for training the PIE model with dataset. - data_process(): Process data into the
format that can be used by PIE model. - sparsity_count(): Counts the number of features used
in group lasso. - RPE(): Evaluate the RPE of a PIE model. - MAE(): Evaluate the MAE of a PIE
model.

For more details, see the documentation for individual functions.

Author(s)

Maintainer: Jingyi Yang <jy4057@stern.nyu.edu>

Authors:

• Tong Wang

• Yunyi Li

• Boxiang Wang

6 PIE_fit

PIE_fit PIE: Partially Interpretable Model

Description

Partially Interpretable Estimators (PIE), which jointly train an interpretable model and a black-
box model to achieve high predictive performance as well as partial model transparency. PIE is
designed to attribute a prediction to contribution from individual features via a linear additive model
to achieve interpretability while complementing the prediction by a black-box model to boost the
predictive performance. Experimental results show that PIE achieves comparable accuracy to the
state-of-the-art black-box models on tabular data. In addition, the understandability of PIE is close
to linear models as validated via human evaluations.

Usage

PIE_fit(X, y, lasso_group, X_orig, lambda1, lambda2, iter, eta, nrounds, ...)

Arguments

X A matrix for the dataset features with numerical splines.

y A vector for the dataset target label.

lasso_group A vector that indicates groups

X_orig A matrix for the dataset features without numerical splines.

lambda1 A numeric number for group lasso penalty. The larger the value, the larger the
penalty.

lambda2 A numeric number for black-box model. The larger the value, the larger contri-
bution of XGBoost model.

iter A numeric number for iterations.

eta A numeric number for learning rate of XGBoost model.

nrounds A numeric number for number of rounds of XGBoost model.

... Additional arguments passed to the XGBoost function.

Details

The PIE_fit function use training dataset to train the PIE model through jointly train an interpretable
model and a black-box model to achieve high predictive performance as well as partial model trans-
parency.

Value

An object of class PIE containing the following components:

Betas The coefficient of group lasso model

Trees The coefficients of XGBoost trees

predict.PIE 7

rrMSE_fit A matrix containing the evaluation between group lasso and y, and evaluation
between full model and y for each iteration.

GAM_pred A matrix containing the contribution of group lasso in each iteration.

Tree_pred A matrix containing the contribution of XGBoost model in each iteration.

best_iter The number of the best iteration.

lambda1 The lambda1 tuning parameter used in PIE.

lambda2 The lambda2 tuning parameter used in PIE.

Examples

Load the training data
data("winequality")

Which columns are numerical?
num_col <- 1:11
Which columns are categorical?
cat_col <- 12
Which column is the response?
y_col <- ncol(winequality)

Data Processing (the first 200 rows are sampled for demonstration)
dat <- data_process(X = as.matrix(winequality[1:200, -y_col]),

y = winequality[1:200, y_col],
num_col = num_col, cat_col = cat_col, y_col = y_col)

Fit a PIE model
fold <- 1
fit <- PIE_fit(

X = dat$spl_train_X[[fold]],
y = dat$train_y[[fold]],
lasso_group = dat$lasso_group,
X_orig = dat$orig_train_X[[fold]],
lambda1 = 0.01, lambda2 = 0.01, iter = 5, eta = 0.05, nrounds = 200

)

predict.PIE Make Predictions for PIE

Description

predicts the response of a PIE object using new data.

Usage

S3 method for class 'PIE'
predict(object, X, X_orig, ...)

8 predict.PIE

Arguments

object A fitted PIE object.

X A matrix for the dataset with features expanded using numerical splines.

X_orig A matrix for the dataset with original features without numerical splines.

... Not used. Other arguments to predict.

Details

Make Predictions for PIE

This function predicts the response of a PIE object.

The PIE_predict function use generate predictions on dataset given the coefficients of group lasso
and coefficients for XGBoost Trees

Value

A list containing:

total The predicted value of the whole model for given features

white_box The contribution of group lasso for the given features

black_box The contribution of XGBoost model for the given features

Examples

Load the training data
data("winequality")

Which columns are numerical?
num_col <- 1:11
Which columns are categorical?
cat_col <- 12
Which column is the response?
y_col <- ncol(winequality)

Data Processing (the first 200 rows are sampled for demonstration)
dat <- data_process(X = as.matrix(winequality[1:200, -y_col]),

y = winequality[1:200, y_col],
num_col = num_col, cat_col = cat_col, y_col = y_col)

Fit a PIE model
fold <- 1
fit <- PIE_fit(

X = dat$spl_train_X[[fold]],
y = dat$train_y[[fold]],
lasso_group = dat$lasso_group,
X_orig = dat$orig_train_X[[fold]],
lambda1 = 0.01, lambda2 = 0.01, iter = 5, eta = 0.05, nrounds = 200

)

Prediction

RPE 9

pred <- predict(fit,
X = dat$spl_validation_X[[fold]],
X_orig = dat$orig_validation_X[[fold]]

)

RPE RPE: Relative Prediction Error

Description

This function takes predicted values and target values to evaluate the performance of a PIE model.
The formula for RPE is:

RPE =

∑
i(yi − ŷi)

2∑
i(yi − ȳ)2

where ȳ = 1
n

∑n
i yi.

Usage

RPE(pred, true_label)

Arguments

pred The predicted values of the dataset.

true_label The actual target values of the dataset.

Value

A numeric value representing the relative prediction error (RPE).

Examples

Load the training data
data("winequality")

Which columns are numerical?
num_col <- 1:11
Which columns are categorical?
cat_col <- 12
Which column is the response?
y_col <- ncol(winequality)

Data Processing (the first 200 rows are sampled for demonstration)
dat <- data_process(X = as.matrix(winequality[1:200, -y_col]),

y = winequality[1:200, y_col],
num_col = num_col, cat_col = cat_col, y_col = y_col)

Fit a PIE model
fold <- 1

10 sparsity_count

fit <- PIE_fit(
X = dat$spl_train_X[[fold]],
y = dat$train_y[[fold]],
lasso_group = dat$lasso_group,
X_orig = dat$orig_train_X[[fold]],
lambda1 = 0.01, lambda2 = 0.01, iter = 5, eta = 0.05, nrounds = 200

)

Prediction
pred <- predict(fit,

X = dat$spl_validation_X[[fold]],
X_orig = dat$orig_validation_X[[fold]]

)

Validation
val_rrmse_test <- RPE(pred$total, dat$validation_y[[fold]])

sparsity_count sparsity_count

Description

This function counts the number of features used in group lasso of PIE model.

Usage

sparsity_count(Betas, lasso_group)

Arguments

Betas The coefficient of group lasso model.

lasso_group The group indicator for group lasso model

Value

An integer: The number of features used in group lasso

Examples

Load the training data
data("winequality")

Which columns are numerical?
num_col <- 1:11
Which columns are categorical?
cat_col <- 12
Which column is the response?
y_col <- ncol(winequality)

winequality 11

Data Processing (the first 200 rows are sampled for demonstration)
dat <- data_process(X = as.matrix(winequality[1:200, -y_col]),

y = winequality[1:200, y_col],
num_col = num_col, cat_col = cat_col, y_col = y_col)

Fit a PIE model
fold <- 1
fit <- PIE_fit(

X = dat$spl_train_X[[fold]],
y = dat$train_y[[fold]],
lasso_group = dat$lasso_group,
X_orig = dat$orig_train_X[[fold]],
lambda1 = 0.01, lambda2 = 0.01, iter = 5, eta = 0.05, nrounds = 200

)

Sparsity count
sparsity_count(fit$Betas, dat$lasso_group)

winequality Wine Quality Data

Description

This dataset contains 5197 data points. It is related to Portuguese ‘Vinho Verdo‘ wine. Input
variables are based on physicochemical tests. This dataset can also be found at [Wine Qual-
ity](https://archive.ics.uci.edu/dataset/186/wine+quality) in UC Irvine Machine Learning Reposi-
tory.

Usage

data(winequality)

Details

Wine Quality Data

A benchmark data set.

Value

A matrix with 5197 rows and 13 columns. The first 11 columns are numerical variables, the 12th
column contains categorical variable, and the last column is the response.

Source

The data were introduced in Cortez et al. (2009).

12 winequality

References

Cortez, P., Cerdeira, A., Almeida, F., Matos, T., & Reis, J. (2009). “Modeling wine preferences by
data mining from physicochemical properties,” Decision Support Systems, 47(4), 547-553.

Examples

Load the PIE library
library(PIE)

Load the dataset
data(winequality)

Index

∗ data
winequality, 11

∗ intrepretable-machine-learning
PIE, 5

∗ set
winequality, 11

data_process, 2

MAE, 4

PIE, 5, 7, 8
PIE-package (PIE), 5
PIE_fit, 6
predict.PIE, 7

RPE, 9

sparsity_count, 10

winequality, 11

13

	data_process
	MAE
	PIE
	PIE_fit
	predict.PIE
	RPE
	sparsity_count
	winequality
	Index

