
New additions as of OUwie 2.1

Jeremy M. Beaulieu and Brian C. O’Meara

It’s been quite a while since we’ve done any active development of OUwie. It was recently brought to our
attention that the likelihoods between OUwie and ouch are not the same when the model assumes different
OU means (what we refer to here as “OUM”). We would like to thank and credit Clay Cressler for working
through our code to identify the specific causes. In doing so, we have taken this opportunity to release a new
version of OUwie that provides cleaner output and a number of new capabilities. Some of these new functions
were implemented at the request of users, for our own research, and as part of tutorials for various workshops.

Bug fixes and deprecated functions

The differences between OUwie and ouch were traced to two issues. There first being a bug in the most recent
version of the weight matrix generation code. For some reason, while looping over the different regimes, the
function was not resetting the regime to the regime at the root, and the calculation for the weights for the
root regime was missing a W0,i + e(−α0,i) term. These are now fixed, and fortunately does not cause any
detectable effect on the likelihood, though it does have a slight impact on the estimates of the regime optima.

The second issue is significant and has to do with the way OUwie and ouch construct the variance-covariance
matrix when assuming stationarity at the root. In Beaulieu et al. (2012), we expanded upon equation A5 in
Butler and King (2004), which assumed that the root optima was estimated. We found that the root regime
was hard, if not impossible, to estimate with even moderate values of α (the pull parameter). Because of
this, by default we drop the root optima and absorb the weight into whatever regime the root was painted.
We incorrectly referred to this as “stationarity”. Ho and Ane (2013) showed that in order to assume true
stationarity in an OU model, the covariance requires an additional variance term to account for the fact that,
up until T = 0, the time at which the clade of interest came into existence, the lineage is assumed to have
been evolving in the ancestral regime. For an intuitive example, consider two tips that diverged at the root.
Under the original formulation of Butler and King (2004) and Beaulieu et al. (2012) the covariance between
the two tips is zero because sij = 0, so 1 − e−2αsij = 0). However, with the Ho and Ane (2013) method, an

additional Vij =
σ2

2α
e−2α is added to the variance-covariance matrix.

It is worth pointing out, however, that Ho and Ane (2014a) cautioned that when there are several regimes the
stationary distribution does not have a clear definition. This is because it is a weighted average of the regimes
the lineage switched between starting from the origin of life to the most recent common ancestor of the focal
clade under study. In other words, it’s not as straightforward as integrating over some distribution. For
now, OUwie assumes a fixed root, where the θ0 is equal to whatever regime the root is painted (see below on
behavior). In order to make OU1 and OUM models only consistent with ouch we have added the stationarity
assumption of Ho and Ane (2014a):

data(tworegime)

pp <- OUwie(tree, trait, model="OUM", root.station=TRUE, scaleHeight=TRUE, shift.point=0, algorithm="invert"

## Warning: The supplied regime painting may be unidentifiable for the regime

## painting. All regimes form connected subtrees.

pp

##

## Fit

## lnL AIC AICc BIC model ntax

1



## -19.75473 47.50945 48.18742 56.14498 OUM 64

##

##

## Rates

## 1 2

## alpha 1.5935448 1.5935448

## sigma.sq 0.6912515 0.6912515

##

## Optima

## 1 2

## estimate 1.6762664 0.3936621

## se 0.1921354 0.3322554

##

##

## Half life (another way of reporting alpha)

## 1 2

## 0.4349719 0.4349719

##

## Arrived at a reliable solution

compare this to the new default:

data(tworegime)

pp <- OUwie(tree, trait, model="OUM", root.station=FALSE, scaleHeight=TRUE, shift.point=0, algorithm="invert"

## Warning: The supplied regime painting may be unidentifiable for the regime

## painting. All regimes form connected subtrees.

pp

##

## Fit

## lnL AIC AICc BIC model ntax

## -19.51361 47.02721 47.70518 55.66274 OUM 64

##

##

## Rates

## 1 2

## alpha 1.3916589 1.3916589

## sigma.sq 0.6545502 0.6545502

##

## Optima

## 1 2

## estimate 1.6751330 0.2935858

## se 0.1822091 0.3797622

##

##

## Half life (another way of reporting alpha)

## 1 2

## 0.4980726 0.4980726

##

## Arrived at a reliable solution

Note that we have also added the new option shift.point into the function call. This allows users to alter
the assumption of where the regime shifts occur. By default OUwie() assumes any regime shift occurs halfway
down a branch (i.e., shift.point=0.5), whereas ouch assumes a regime shift occurs at the end of the branch
(i.e, shift.point=0). Generally speaking, this will have a slight effect on estimates of θi because the position

2



of regime shift point will alter the time spent in each regime.

Finally, we note that we have removed two functions previously available: OUwie.joint() and OUwie.slice().
The OUwie.joint() function was developed for a particular study question (e.g., Leslie et al. 2014), otherwise
it is not particularly useful. The function OUwie.slice() was developed and moderately tested, but it does
not seem to work particularly well. Both functions are still available by request, and future work will focus
on improving and understanding the behavior of OUwie.slice().

New Features

Idenfiability tests

Ho and Ane (2014a) demonstrated that certain regime paintings can produce a ridge in the likelihood surface,
which will lead to convergence issues. Specifically, when each regime forms a connected subtree this produces
a m − 1 regime shifts, which is the minimal number. In these situations, the selective optima may not
be separately identifiable. In this version of OUwie we have implemented a “identifiability of the regime
paintings” check, as both part of the OUwie() function and as a standalone function. With OUwie() by
default check.identify=TRUE, and if the check fails, the function will spit out a warning for now. However,
this check can be turned off by simply changing check.identify=FALSE. The standalone function simply
requires the tree with the regimes painted (either as a simmap object or with node labels) and the data set.
Figure 1 depicts a similar example as the one shown in Figure 2 of Ho and Ane (2014a).

Using the trees in Figure 1, we can conduct a formal test of identifiability of the θi parameters in the model.
Let’s try the unidentifiable case:

load("simUnidentifiable.Rsave")

check.identify(phy, data)

## The regime optima are unidentifiable.

## [1] 0

Now, the identifiable case:

load("simIdentifiable.Rsave")

check.identify(phy, data)

## The regime optima are identifiable.

## [1] 1

Another way to diagnose identifiability is to look at the $regime.weights now provided as part of the model
fit output. If the weights for every taxon in a given regime are identical, then the expected values of any
two taxa in this regime are also identical. This was shown in the mathematical proof of Ho and Ane (2014a,
see Appendix 1). It is important to note that we have seen in simulation that even the unidentifiable cases
perform well. However, this may be illusory, and we recommend this test always be used as a guide, especially
in instances where the resulting model fit is unstable or seems off.

Contour plots

Confidence intervals are typically estimated for each parameter individually. However, the confidence intervals
calculated for pairs of correlated parameters can be much wider than their respective univariate confidence
intervals. For example, for OU models a decrease in σ2 has a similar effect as an increase in α: less variation
at the tips. There are differences, of course, so the parameters are identifiable (greater α tends to erase
phylogenetic signal, whereas lower σ2 does not). For practical problems, it is possible to have a ridge of
nearly equal likelihood where if you change just one parameter, this is enough to move it off the ridge, but if
you were to change both this would result in simply sliding along the ridge. This “ridge” behavior is precisely
what happens when the θroot is included in the model.

3



Figure 1: The edges are painted by regime, assuming an optimum θi for each color. As shown in Ho and Ane
(2014a) the left shows an case of unidentifiability case because every regime forms a connected component. The
tree on the right shows a case of identifiability because the black regime covers two completely disconnected
parts in the tree.

4



We now allow users to create contour maps of the likelihood surface for any pair of parameters in a given
OUwie model. Specifically, we sample a large set of points using a latin hypercube design, and one by one we
use these as fixed values for our focal parameters, and we then search for the maximum likelihood estimates
for the remaining parameters in the model. This step is done using the new OUwie.contour() function. We
will use the trees from above, to show what a “ridge” looks likes.

load("simsOUidentify_8")

surfaceDatThetaR_2 <- OUwie.contour(oum.root, focal.params=c("theta_Root", "theta_2"), focal.params.upper=

surfaceDatTheta1_2 <- OUwie.contour(oum.root, focal.params=c("theta_1", "theta_2"), focal.params.upper=c(

We want to look at the likelihood surface for θroot vs. θ2 and for θ1 vs. θ2, for an OUM model with the θroot

included in the model. The pair of parameters to examine is passed by focal.param, and the parameters
need to be either “theta”, “alpha”, or “sigma.sq”. For example, to look at sigma.sq from the first regime
and alpha from the second regime, one would pass focal.param = c( "sigma.sq_1", "alpha_2"). If
the regimes are input as characters like, say, flower color, the focal parameter would be focal.param =

c( "sigma.sq_Red", "sigma.sq_Blue"). Note that the OUwie.contour function can also be used across
multiple processors (n.cores!=NULL). Once the set of points have been evaluated, the plot of the likelihood
surface can be generated by inputting OUwie.contour into a plotting function:

plot(surfaceDatThetaR_2, mle.point="red", levels=c(0:20*0.1), xlab=expression(theta[root]), ylab=expression

A few notes about the inputs for the plotting function. First, it requires an object of class OUwie.contour.
Second, by default mle.point=NULL, which means the MLE point on the surface will not be plotted, unlesss
a color is specified. The axis labels can be customized, or left as NULL, in which case the focal.param input
from the OUwie.contour function will be used. The limits to both the x and y axes (the first two values), as
well as the spacing (the third value) can be also specified. Finally, the levels and the color vector must be of
the same length. In the example above, the levels correspond to the space within 2 log-likelihood from the
MLE, with colors increasingly becoming lighter as the distance from the MLE increases.

Using a simulated data set, Figure 2 shows the impact of including the θroot into the model – that is, the
likelihood surface forms a ridge where linear combinations of parameter values produce identical likelihoods.
In such situations the MLE is undefined and the parameters are generally unidentifiable. When the θroot is
dropped from the model, as shown in Figure 3, MLE estimates of θ1, θ2, θ3 are sufficiently peaked and are
clearly separately identifiable.

Ancestral trait reconstruction

Since OUwie was first released we’ve received a deluge of requests to allow for ancestral trait reconstruction.
One such request made its way onto the public R-SIG-PHYLO discussion forum, which stimulated an
important conversation about not whether or not you could estimate ancestral states, but, rather, should you.
The answer is “it’s complicated” and we honestly don’t recommend it. In our view, the intended use case
is just to visualize what the model is saying about evolution to help intuition. For example, is the model
something you can believe in? But, if you don’t want to listen to us regarding the merits of ancestral trait
reconstructions, here is a sample of comments from other experts in the field:

So in short, yes, you can do it, with any number of methods. But why? If you can answer your
biological question with methods that do not involve estimation of a parameter that is inherently
fraught with error, it might be better to go another way. Bottom line - use caution and be
thoughtful! – Marguerite Butler

I would add an extra caveat to Marguerite’s excellent post: Most researchers work with extant
taxa only, ignoring extinction. This causes a massive ascertainment bias, and the character states
of the extinct taxa can often be very different to the ancestral state reconstructions, particularly if
the evolutionary model is wrong. E.g. there has been an evolutionary trend for example. Ancestral
state reconstructions based only on extant taxa should be treated as hypotheses to be tested with
fossil data. I wouldn’t rely on them for much more. – Simone Blomberg

5



0

1

2

3

4

5

0 1 2 3 4 5

θroot

θ 2

0

1

2

3

4

5

0 1 2 3 4 5

θ1

θ 2
Figure 2: A contour plot of a OUM model, with the θroot included in the model. (A) The contour for when
θroot and θ2 are specified as the focal parameters, and (B) shows the likelihood surface for when θ1 and θ2

are specified. In both cases, the likelihood surface appears as a ridge, indicating that the regimes are not
separately identifiable.

0

1

2

3

4

5

0 1 2 3 4 5

θ1

θ 2

0

1

2

3

4

5

0 1 2 3 4 5

θ1

θ 3

Figure 3: A contour plot of a OUM model, with the θroot removed from the model. (A) The contour for
when θ1 and θ2 are specified as the focal parameters, and (B) for when θ1 and θ3 are specified, the likelihood
surface is sufficiently peaked. In other words, the likelihood surface no longer appears as a ridge and regimes
are separately identifiable.

6



While I am at it, let me echo Simone and Marguerite’s warnings. The predicted ancestral states
will reflect the process you assumed to predict them. Hence, if you use them to make inferences
about evolution, you will recover your own assumptions. I.e. if you predict from a model with no
trend, you will find no trend, etc. Many comparative studies are flawed for this reason. – Thomas
Hansen

Let me add more warnings to Marguerite and Thomas’s excellent responses. People may be
tempted to infer ancestral states and then treat those inferences as data (and also to infer ancestral
environments and then treat those inferences as data). In fact, I wonder whether that is not the
main use people make of these inferences. But not only are those inferences very noisy, they are
correlated with each other. So if you infer the ancestral state for the clade (Old World Monkeys,
Apes) and also the ancestral state for the clade (New World Monkeys, (Old World Monkeys, Apes))
the two will typically not only be error-prone, but will also typically be subject to strongly correlated
errors. Using them as data for further inferences is very dubious. It is better to figure out what
your hypothesis is and then test it on the data from the tips of the tree, without the intermediate
step of taking ancestral state inferences as observations. The popular science press in particular
demands a fly-on-the-wall account of what happened in evolution, and giving them the ancestral
state inferences as if they were known precisely is a mistake. – Joe Felsenstein

The minor twist I would throw in is that it’s difficult to make universal generalizations about the
quality of ancestral state estimation. If one is interested in the ancestral state value at node N, it
might be reasonably estimated if it is nested high up within the phylogeny, if the rates of change
aren’t high, etc. And (local) trends etc might well be reliably inferred. We are pretty confident
that the common ancestor of humans and chimps was larger than many deeper primate ancestors,
for instance. If N is the root of your available phylogeny, however, you have to be much more
cautious. – Nick Matzke

I’ll also add that I think there’s a great deal to be skeptical of ancestral trait reconstruction even
when large amounts of fossil data is available. You can try the exercise yourself: simulate pure
BM on a non-ultrametric tree with lots of ‘extinct’ tips, and you’ll still find pretty large confidence
intervals on the estimates of the trait values. What does it mean to do ancestral trait reconstruction,
if our calculations of uncertainty are that broad? – Dave Bapst

These people probably know better than anyone about the power and limitations of the OU model in
phylogenetics. So, don’t listen to us, listen to them!

Still determined? Ok, fair enough. It is straightforward to run the ancestral trait reconstruction in OUwie.
All you need is an object of class OUwie, which is plugged directly into the new OUwie.anc() function:

data(tworegime)

set.seed(42)

ouwiefit <- OUwie(tree, trait, model="OUM", scaleHeight=TRUE, root.station=FALSE, shift.point=0.5, algorithm=

recon <- OUwie.anc(ouwiefit)

Ah! If you run the code above a somewhat snarky response is printed to the screen. Since you are here
reading this, we think this is sufficient, and you are at least aware that we are not huge fans of this approach.
So, there is no need to read the manual (it’s basically the same as what you see here), and the proper way to
call the OUwie.anc() function call is simply add in knowledge=TRUE:

recon <- OUwie.anc(ouwiefit, knowledge=TRUE)

From there, you can then easily plot these reconstructions using an internal function that recognizes the
OUwie and OUwie.anc class:

Generalized three-point structured algorithm

A long time complaint about OUwie is that it does not scale well when trees exceed 1000 species. This was
largely due to the fact that we relied completely on linear algebra functions, in particular, computing the

7



t1

t2

t3

t4

t5

t6

t7

t8

t9

t10

t11

t12

t13

t14

t15

t16

t17

t18

t19

t20

t21

t22

t23

t24

t25

t26

t27

t28

t29

t30

t31

t32

t33

t34

t35

t36

t37

t38

t39

t40

t41

t42

t43

t44

t45

t46

t47

t48

t49

t50

t51

t52

t53

t54

t55

t56

t57

t58

t59

t60

t61

t62

t63

t64

−0.448 2.407trait value

length=0.5

Figure 4: A plot of the ancestral state reconstruction under an OUwie model.
8



determinant of the variance-covariance matrix, V , as well as inverting it to obtain the log-likelihood and
calculate θi. Starting with OUwie version 2.5, we include the generalize three-point algorithm of Ho and Ane
(2014b) that bypasses the need for these inefficient calculations. The details of this algorithm are beyond the
scope of this vignette and readers should consult Ho and Ane (2014b). The generalized three-point structured
algorithm can now be specified in the OUwie() function call:

data(tworegime)

three.point <- OUwie(tree, trait, model="OUMV", root.station=FALSE, scaleHeight=TRUE, shift.point=0.5, algorithm=

three.point

##

## Fit

## lnL AIC AICc BIC model ntax

## -14.79505 39.59011 40.62459 50.38453 OUMV 64

##

##

## Rates

## 1 2

## alpha 1.7124628 1.712463

## sigma.sq 0.3518159 1.076873

##

## Optima

## 1 2

## estimate 1.676914 0.5567907

## se NA NA

##

##

## Half life (another way of reporting alpha)

## 1 2

## 0.4047663 0.4047663

##

## Arrived at a reliable solution

We can compare this to the using the standard matrix determinant and matrix inversion:

data(tworegime)

invert <- OUwie(tree, trait, model="OUMV", root.station=FALSE, scaleHeight=TRUE, shift.point=0.5, algorithm=

## Warning: The supplied regime painting may be unidentifiable for the regime

## painting. All regimes form connected subtrees.

invert

##

## Fit

## lnL AIC AICc BIC model ntax

## -14.79506 39.59011 40.6246 50.38453 OUMV 64

##

##

## Rates

## 1 2

## alpha 1.7110818 1.711082

## sigma.sq 0.3517019 1.076479

##

## Optima

## 1 2

## estimate 1.676894 0.5563541

9



## se 0.112031 0.3020699

##

##

## Half life (another way of reporting alpha)

## 1 2

## 0.405093 0.405093

##

## Arrived at a reliable solution

In this particular example, the log-likelihoods are identical. However, users are cautioned that some slight
differences between the algorithm="invert" and algorithm="three.point" will likely be common. The
use of the three-point structured algorithm requires that θi be optimized like any other parameter in the
model, whereas with the matrix inversion approach θi are solved numerically. This means that when there
are differences in the log-likelihood it is likely because one or more of θi is not at the MLE after using the
three-point algorithm. Users are encouraged then to examine the contours of pairs of θi. Also note, that the
speed-ups afforded by the three-point algorithm is most observable when the tree size exceeds 500 taxa.

References

Beaulieu J.M., D.C. Jhwueng, C. Boettiger, and B.C. O’Meara. 2012. Modeling stabilizing selection:
Expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution, 66:2369-2383.

Butler M.A., A.A. King A.A. 2004. Phylogenetic comparative analysis: A modeling approach for adaptive
evolution. American Naturalist, 164:683-695.

Ho, L.S.T., and C. Ane. 2013. Asymptotic theory with hierarchical autocorrelation: Orstein-Uhlenbeck tree
models. The Annals of Statistics, 41:957-981.

Ho, L.S.T., and C. Ane. 2014a. Intrinsic inference difficulties for trait evolution with Ornstein-Uhlenbeck
models. Methods in Ecology and Evolution, 5: 1133-1146.

Ho, L.S.T., and C. Ane. 2014b. A linear-time algorithm for Gaussian and non-Gaussian trait evolution
models. Systematic Biology, 63:397-408.

10


	Bug fixes and deprecated functions
	New Features
	Idenfiability tests

	Contour plots
	Ancestral trait reconstruction
	Generalized three-point structured algorithm

	References

