
Package ‘LiblineaR’
September 13, 2024

Encoding UTF-8

Title Linear Predictive Models Based on the LIBLINEAR C/C++ Library

Version 2.10-24

Date 2024-09-13

Description A wrapper around the LIBLINEAR C/C++ library for machine
learning (available at
<https://www.csie.ntu.edu.tw/~cjlin/liblinear/>). LIBLINEAR is
a simple library for solving large-scale regularized linear
classification and regression. It currently supports
L2-regularized classification (such as logistic regression,
L2-loss linear SVM and L1-loss linear SVM) as well as
L1-regularized classification (such as L2-loss linear SVM and
logistic regression) and L2-regularized support vector
regression (with L1- or L2-loss). The main features of
LiblineaR include multi-class classification (one-vs-the rest,
and Crammer & Singer method), cross validation for model
selection, probability estimates (logistic regression only) or
weights for unbalanced data. The estimation of the models is
particularly fast as compared to other libraries.

License GPL-2

LazyLoad yes

Suggests SparseM, Matrix

Imports methods

URL <https://dnalytics.com/software/liblinear/>

NeedsCompilation yes

Author Thibault Helleputte [cre, aut, cph],
Jérôme Paul [aut],
Pierre Gramme [aut]

Maintainer Thibault Helleputte <thibault.helleputte@dnalytics.com>

Repository CRAN

Date/Publication 2024-09-13 12:10:07 UTC

1

https://www.csie.ntu.edu.tw/~cjlin/liblinear/
https://dnalytics.com/software/liblinear/>

2 heuristicC

Contents
heuristicC . 2
LiblineaR . 3
predict.LiblineaR . 9

Index 11

heuristicC Fast Heuristics For The Estimation Of the C Constant Of A Support
Vector Machine.

Description

heuristicC implements a heuristics proposed by Thorsten Joachims in order to make fast estimates
of a convenient value for the C constant used by support vector machines. This implementation only
works for linear support vector machines.

Usage

heuristicC(data)

Arguments

data a nxp data matrix. Each row stands for an example (sample, point) and each
column stands for a dimension (feature, variable)

Value

A value for the C constant is returned, computed as follows:
1

1
n

∑n
i=1

√
G[i,i]

where G = data% ∗%t(data)

Note

Classification models usually perform better if each dimension of the data is first centered and
scaled. If data are scaled, it is better to compute the heuristics on the scaled data as well.

Author(s)

Thibault Helleputte <thibault.helleputte@dnalytics.com>

References

• T. Joachims
SVM light (2002)
http://svmlight.joachims.org

See Also

LiblineaR

http://svmlight.joachims.org

LiblineaR 3

Examples

data(iris)

x=iris[,1:4]
y=factor(iris[,5])
train=sample(1:dim(iris)[1],100)

xTrain=x[train,]
xTest=x[-train,]
yTrain=y[train]
yTest=y[-train]

Center and scale data
s=scale(xTrain,center=TRUE,scale=TRUE)

Sparse Logistic Regression
t=6

co=heuristicC(s)
m=LiblineaR(data=s,labels=yTrain,type=t,cost=co,bias=TRUE,verbose=FALSE)

LiblineaR Linear predictive models estimation based on the LIBLINEAR C/C++
Library.

Description

LiblineaR allows the estimation of predictive linear models for classification and regression, such
as L1- or L2-regularized logistic regression, L1- or L2-regularized L2-loss support vector classifica-
tion, L2-regularized L1-loss support vector classification and multi-class support vector classifica-
tion. It also supports L2-regularized support vector regression (with L1- or L2-loss). The estimation
of the models is particularly fast as compared to other libraries. The implementation is based on the
LIBLINEAR C/C++ library for machine learning.

Usage

LiblineaR(
data,
target,
type = 0,
cost = 1,
epsilon = 0.01,
svr_eps = NULL,
bias = 1,
wi = NULL,
cross = 0,

4 LiblineaR

verbose = FALSE,
findC = FALSE,
useInitC = TRUE,
...

)

Arguments

data a nxp data matrix. Each row stands for an example (sample, point) and each
column stands for a dimension (feature, variable). Sparse matrices of class ma-
trix.csr, matrix.csc and matrix.coo from package SparseM are accepted. Sparse
matrices of class dgCMatrix, dgRMatrix or dgTMatrix from package Matrix are
also accepted. Note that C code at the core of LiblineaR package corresponds to
a row-based sparse format. Hence, dgCMatrix, dgTMatrix, matrix.csc and ma-
trix.csr inputs are first transformed into matrix.csr or dgRMatrix formats, which
requires small extra computation time.

target a response vector for prediction tasks with one value for each of the n rows of
data. For classification, the values correspond to class labels and can be a 1xn
matrix, a simple vector or a factor. For regression, the values correspond to the
values to predict, and can be a 1xn matrix or a simple vector.

type LiblineaR can produce 10 types of (generalized) linear models, by combining
several types of loss functions and regularization schemes. The regularization
can be L1 or L2, and the losses can be the regular L2-loss for SVM (hinge loss),
L1-loss for SVM, or the logistic loss for logistic regression. The default value
for type is 0. See details below. Valid options are:

for multi-class classification • 0 – L2-regularized logistic regression (pri-
mal)

• 1 – L2-regularized L2-loss support vector classification (dual)
• 2 – L2-regularized L2-loss support vector classification (primal)
• 3 – L2-regularized L1-loss support vector classification (dual)
• 4 – support vector classification by Crammer and Singer
• 5 – L1-regularized L2-loss support vector classification
• 6 – L1-regularized logistic regression
• 7 – L2-regularized logistic regression (dual)

for regression • 11 – L2-regularized L2-loss support vector regression (pri-
mal)

• 12 – L2-regularized L2-loss support vector regression (dual)
• 13 – L2-regularized L1-loss support vector regression (dual)

cost cost of constraints violation (default: 1). Rules the trade-off between regulariza-
tion and correct classification on data. It can be seen as the inverse of a regular-
ization constant. See information on the ’C’ constant in details below. A usually
good baseline heuristics to tune this constant is provided by the heuristicC
function of this package.

epsilon set tolerance of termination criterion for optimization. If NULL, the LIBLINEAR
defaults are used, which are:

if type is 0, 2, 5 or 6 epsilon=0.01

LiblineaR 5

if type is 1, 3, 4, 7, 12 or 13 epsilon=0.1

The meaning of epsilon is as follows:

if type is 0 or 2: |f ′(w)|2 ≤ epsilon × min(pos, neg)/l × |f ′(w0)|2, where
f is the primal function and pos/neg are # of positive/negative data (default
0.01)

if type is 11: |f ′(w)|2 ≤ epsilon × |f ′(w0)|2, where f is the primal function
(default 0.001)

if type is 1, 3, 4 or 7: Dual maximal violation ≤ epsilon (default 0.1)
if type is 5 or 6: |f ′(w)|∞ ≤ epsilon×min(pos, neg)/l |f ′(w0)|∞, where f

is the primal function (default 0.01)
if type is 12 or 13: |f ′(α)|1 ≤ epsilon× |f ′(α0)|1, where f is the dual func-

tion (default 0.1)

svr_eps set tolerance margin (epsilon) in regression loss function of SVR. Not used for
classification methods.

bias if bias > 0, instance data becomes [data; bias]; if <= 0, no bias term added
(default 1).

wi a named vector of weights for the different classes, used for asymmetric class
sizes. Not all factor levels have to be supplied (default weight: 1). All compo-
nents have to be named according to the corresponding class label. Not used in
regression mode.

cross if an integer value k>0 is specified, a k-fold cross validation on data is per-
formed to assess the quality of the model via a measure of the accuracy. Note
that this metric might not be appropriate if classes are largely unbalanced. De-
fault is 0.

verbose if TRUE, information are printed. Default is FALSE.

findC if findC is TRUE runs a cross-validation of cross folds to find the best cost (C)
value (works only for type 0 and 2). Cross validation is conducted many times
under parameters C = start_C, 2*start_C, 4*start_C, 8*start_C, ..., and finds the
best one with the highest cross validation accuracy. The procedure stops when
the models of all folds become stable or C reaches the maximal value of 1024.

useInitC if useInitC is TRUE (default) cost is used as the smallest start_C value of the
search range (findC has to be TRUE). If useInitC is FALSE, then the procedure
calculates a small enough start_C.

... for backwards compatibility, parameter labels may be provided instead of
target. A warning will then be issued, or an error if both are present. Other
extra parameters are ignored.

Details

For details for the implementation of LIBLINEAR, see the README file of the original c/c++
LIBLINEAR library at https://www.csie.ntu.edu.tw/~cjlin/liblinear/.

Value

If cross>0, the average accuracy (classification) or mean square error (regression) computed over
cross runs of cross-validation is returned.

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

6 LiblineaR

Otherwise, an object of class "LiblineaR" containing the fitted model is returned, including:

TypeDetail A string decsribing the type of model fitted, as determined by type.

Type An integer corresponding to type.

W A matrix with the model weights. If bias >0, W contains p+1 columns, the last
being the bias term. The columns are named according to the names of data, if
provided, or "Wx" where "x" ranges from 1 to the number of dimensions. The
bias term is named "Bias".If the number of classes is 2, or if in regression mode
rather than classification, the matrix only has one row. If the number of classes
is k>2 (classification), it has k rows. Each row i corresponds then to a linear
model discriminating between class i and all the other classes. If there are more
than 2 classes, rows are named according to the class i which is opposed to the
other classes.

Bias The value of bias

ClassNames A vector containing the class names. This entry is not returned in case of regres-
sion models.

Note

Classification models usually perform better if each dimension of the data is first centered and
scaled.

Author(s)

Thibault Helleputte <thibault.helleputte@dnalytics.com> and
Jerome Paul <jerome.paul@dnalytics.com> and Pierre Gramme.
Based on C/C++-code by Chih-Chung Chang and Chih-Jen Lin

References

• For more information on LIBLINEAR itself, refer to:
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classification,
Journal of Machine Learning Research 9(2008), 1871-1874.
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

See Also

predict.LiblineaR, heuristicC

Examples

data(iris)
attach(iris)

x=iris[,1:4]
y=factor(iris[,5])
train=sample(1:dim(iris)[1],100)

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

LiblineaR 7

xTrain=x[train,]
xTest=x[-train,]
yTrain=y[train]
yTest=y[-train]

Center and scale data
s=scale(xTrain,center=TRUE,scale=TRUE)

Find the best model with the best cost parameter via 10-fold cross-validations
tryTypes=c(1:6)
tryCosts=c(1000,0.001)
bestCost=NA
bestAcc=0
bestType=NA

for(ty in tryTypes){
for(co in tryCosts){
acc=LiblineaR(data=s,target=yTrain,type=ty,cost=co,bias=1,cross=5,verbose=FALSE)
cat("Results for C=",co," : ",acc," accuracy.\n",sep="")
if(acc>bestAcc){
bestCost=co
bestAcc=acc
bestType=ty
}
}
}

cat("Best model type is:",bestType,"\n")
cat("Best cost is:",bestCost,"\n")
cat("Best accuracy is:",bestAcc,"\n")

Re-train best model with best cost value.
m=LiblineaR(data=s,target=yTrain,type=bestType,cost=bestCost,bias=1,verbose=FALSE)

Scale the test data
s2=scale(xTest,attr(s,"scaled:center"),attr(s,"scaled:scale"))

Make prediction
pr=FALSE
if(bestType==0 || bestType==7) pr=TRUE

p=predict(m,s2,proba=pr,decisionValues=TRUE)

Display confusion matrix
res=table(p$predictions,yTest)
print(res)

Compute Balanced Classification Rate
BCR=mean(c(res[1,1]/sum(res[,1]),res[2,2]/sum(res[,2]),res[3,3]/sum(res[,3])))
print(BCR)

#' ###

8 LiblineaR

Example of the use of a sparse matrix of class matrix.csr :

if(require(SparseM)){

Sparsifying the iris dataset:
iS=apply(iris[,1:4],2,function(a){a[a<quantile(a,probs=c(0.25))]=0;return(a)})
irisSparse<-as.matrix.csr(iS)

Applying a similar methodology as above:
xTrain=irisSparse[train,]
xTest=irisSparse[-train,]

Re-train best model with best cost value.
m=LiblineaR(data=xTrain,target=yTrain,type=bestType,cost=bestCost,bias=1,verbose=FALSE)

Make prediction
p=predict(m,xTest,proba=pr,decisionValues=TRUE)

}

#' ###

Example of the use of a sparse matrix of class dgCMatrix :

if(require(Matrix)){

Sparsifying the iris dataset:
iS=apply(iris[,1:4],2,function(a){a[a<quantile(a,probs=c(0.25))]=0;return(a)})
irisSparse<-as(iS,"sparseMatrix")

Applying a similar methodology as above:
xTrain=irisSparse[train,]
xTest=irisSparse[-train,]

Re-train best model with best cost value.
m=LiblineaR(data=xTrain,target=yTrain,type=bestType,cost=bestCost,bias=1,verbose=FALSE)

Make prediction
p=predict(m,xTest,proba=pr,decisionValues=TRUE)

}

###

Try regression instead, to predict sepal length on the basis of sepal width and petal width:

xTrain=iris[c(1:25,51:75,101:125),2:3]
yTrain=iris[c(1:25,51:75,101:125),1]
xTest=iris[c(26:50,76:100,126:150),2:3]
yTest=iris[c(26:50,76:100,126:150),1]

Center and scale data

predict.LiblineaR 9

s=scale(xTrain,center=TRUE,scale=TRUE)

Estimate MSE in cross-vaidation on a train set
MSECross=LiblineaR(data = s, target = yTrain, type = 13, cross = 5, svr_eps=.01)

Build the model
m=LiblineaR(data = s, target = yTrain, type = 13, cross=0, svr_eps=.01)

Test it, after test data scaling:
s2=scale(xTest,attr(s,"scaled:center"),attr(s,"scaled:scale"))
pred=predict(m,s2)$predictions
MSETest=mean((yTest-pred)^2)

Was MSE well estimated?
print(MSETest-MSECross)

Distribution of errors
print(summary(yTest-pred))

predict.LiblineaR Predictions with LiblineaR model

Description

The function applies a model (classification or regression) produced by the LiblineaR function to
every row of a data matrix and returns the model predictions.

Usage

S3 method for class 'LiblineaR'
predict(object, newx, proba = FALSE, decisionValues = FALSE, ...)

Arguments

object Object of class "LiblineaR", created by LiblineaR.

newx An n x p matrix containing the new input data. A vector will be transformed to a
n x 1 matrix. Sparse matrices of class matrix.csr, matrix.csc and matrix.coo from
package SparseM are accepted. Sparse matrices of class dgCMatrix, dgRMatrix
or dgTMatrix from package Matrix are also accepted. Note that C code at the
core of LiblineaR package corresponds to a row-based sparse format. Hence,
dgCMatrix, dgTMatrix, matrix.csc and matrix.csr inputs are first transformed
into matrix.csr or dgRMatrix formats, which requires small extra computation
time.

proba Logical indicating whether class probabilities should be computed and returned.
Only possible if the model was fitted with type=0, type=6 or type=7, i.e. a
Logistic Regression. Default is FALSE.

10 predict.LiblineaR

decisionValues Logical indicating whether model decision values should be computed and re-
turned. Only possible for classification models (type<10). Default is FALSE.

... Currently not used

Value

By default, the returned value is a list with a single entry:

predictions A vector of predicted labels (or values for regression).

If proba is set to TRUE, and the model is a logistic regression, an additional entry is returned:

probabilities An n x k matrix (k number of classes) of the class probabilities. The columns of
this matrix are named after class labels.

If decisionValues is set to TRUE, and the model is not a regression model, an additional entry is
returned:

decisionValues An n x k matrix (k number of classes) of the model decision values. The columns
of this matrix are named after class labels.

Note

If the data on which the model has been fitted have been centered and/or scaled, it is very important
to apply the same process on the newx data as well, with the scale and center values of the training
data.

Author(s)

Thibault Helleputte <thibault.helleputte@dnalytics.com> and
Jerome Paul <jerome.paul@dnalytics.com> and Pierre Gramme.
Based on C/C++-code by Chih-Chung Chang and Chih-Jen Lin

References

• For more information on LIBLINEAR itself, refer to:
R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin.
LIBLINEAR: A Library for Large Linear Classification,
Journal of Machine Learning Research 9(2008), 1871-1874.
https://www.csie.ntu.edu.tw/~cjlin/liblinear/

See Also

LiblineaR

https://www.csie.ntu.edu.tw/~cjlin/liblinear/

Index

∗ classes
LiblineaR, 3
predict.LiblineaR, 9

∗ classif
heuristicC, 2
LiblineaR, 3
predict.LiblineaR, 9

∗ models
LiblineaR, 3
predict.LiblineaR, 9

∗ multivariate
LiblineaR, 3
predict.LiblineaR, 9

∗ optimize
LiblineaR, 3
predict.LiblineaR, 9

∗ regression
LiblineaR, 3
predict.LiblineaR, 9

heuristicC, 2, 6

LiblineaR, 2, 3, 10

predict.LiblineaR, 6, 9

11

	heuristicC
	LiblineaR
	predict.LiblineaR
	Index

