Package 'IVCor'

January 20, 2025

Type Package

Title A Robust Integrated Variance Correlation

Version 0.1.0

Description A integrated variance correlation is proposed to measure the dependence between a categorical or continuous random variable and a continuous random variable or vector. This package is designed to estimate the new correlation coefficient with parametric and non-parametric approaches.

Test of independence for different problems can also be implemented via the new correlation coefficient with this package.

License GPL-3

Encoding UTF-8

Imports splines, quantreg, BwQuant, quantdr, stats

RoxygenNote 7.2.3

Suggests knitr, mvtnorm, rmarkdown, testthat (>= 3.0.0)

VignetteBuilder knitr

Config/testthat/edition 3

NeedsCompilation no

Author Wei Xiong [aut], Han Pan [aut, cre], Hengjian Cui [aut]

Maintainer Han Pan <scott_pan@163.com>

Repository CRAN

Date/Publication 2025-01-09 18:00:02 UTC

Contents

IVC		 •						•				•										2	2
IVCCA		 •						•				•										3	3
IVCCAT		 •				•																4	1
IVCCA_c	crit .	 •						•				•										5	5
IVCLLQ		 •						•				•	•	•	•			•	•	•		5	5

IVCT	6
IVCTLLQ	7
IVCT_Interval	8
IVC_crit	9
IVC_Interval	10
	12

Index

IVC

Integrated Variance Correlation

Description

This function is used to calculate the integrated variance correlation between two random variables or between a random variable and a multivariate random variable

Usage

IVC(y, x, K, NN = 3, type)

Arguments

У	is a numeric vector
х	is a numeric vector or a data matrix
К	is the number of quantile levels
NN	is the number of B spline basis, default is 3
type	is an indicator for measuring linear or nonlinear correlation, "linear" represents linear correlation and "nonlinear" represents linear or nonlinear correlation using B splines

Value

The value of the corresponding sample statistic

```
# linear model
n=100
x=rnorm(n)
y=3*x+rnorm(n)
IVC(y,x,K=5,type="linear")
# nonlinear model
n=100
p=3
x=matrix(NA,nrow=n,ncol=p)
for(i in 1:p){
x[,i]=rnorm(n)
```

IVCCA

```
}
y=cos(x[,1]+x[,2])+x[,3]^2+rnorm(n)
IVC(y,x,K=5,type="nonlinear")
```

IVCCA

Integrated Variance Correlation with Discrete Response Variable

Description

This function is used to calculate the integrated variance correlation between a discrete response variable and a continuous random variable

Usage

IVCCA(y, x, K)

Arguments

У	is the categorical response vector
x	is a numeric vector
К	is the number of quantile levels

Value

The value of the corresponding sample statistic

```
n=100
y=sample(rep(1:3), n, replace = TRUE, prob = c(1/3,1/3,1/3))
x=c()
for(i in 1:n){
    x[i]=rnorm(1,mean=2*y[i],sd=1)
}
IVCCA(y,x,K=5)
```

IVCCAT

Description

This function is used to test independence between a categorical variable and a continuous variable using integrated variance correlation

Usage

IVCCAT(y, x, K, num_per, type)

Arguments

У	is a categorical response vector
х	is a numeric vector
К	is the number of quantile levels
num_per	is the number of permutation times
type	is an indicator for fixed number of categories or infinity number of categories, "fixed" represents number of categories is fixed, then a permutation test is used, "infinity" represents number of categories is infinite, then an asymptotic normal distribution is used to calculate p values

Value

The p-value of the corresponding hypothesis test

```
# small R
n=100
x=runif(n,0,1)
y=sample(rep(1:3), n, replace = TRUE, prob = c(1/3,1/3,1/3))
IVCCAT(y,x,K=5,num_per=20,type = "fixed")
# large R
n=200
y=sample(rep(1:20), n, replace = TRUE, prob = rep(1/20,20))
mu_x=sample(c(1,2,3,4),20,replace = TRUE, prob = c(1/4,1/4,1/4,1/4))
x=c()
for (i in 1:n) {
    x[i]=2*mu_x[y[i]]+rcauchy(1)
}
IVCCAT(y,x,K=10,type = "infinity")
```

IVCCA_crit

Critical Values for Integrated Variance Correlation Based Hypothesis Test with Discrete Response

Description

This function is used to calculate the critical values for integrated variance correlation test with discrete response at significance level 0.1, 0.05 and 0.01

Usage

IVCCA_crit(R, N = 500, realizations)

Arguments

R	is the number of categories
Ν	is a integer as large as possible, default is 500
realizations	is the the number of replication times for simulating the distribution under the null hypothesis

Value

The critical values at significance level 0.1, 0.05 and 0.01

Examples

IVCCA_crit(R=5,N=500,realizations=100)

т\/	n	\sim
ΤV	υ	 Ų

Integrated Variance Correlation with Local Linear Estimation

Description

This function is used to calculate the integrated variance correlation between two random variables with local linear estimation

Usage

IVCLLQ(y, x, K)

Arguments

У	is a numeric vector
x	is a numeric vector
К	is the number of quantile levels

Value

The value of the corresponding sample statistic

Examples

```
n=100
x=rnorm(n)
y=exp(x)+rnorm(n)
```

IVCLLQ(y,x,K=4)

IVCT

Integrated Variance Correlation Based Hypothesis Test

Description

This function is used to test significance of linear or nonlinear correlation using integrated variance correlation

Usage

IVCT(y, x, K, num_per, NN = 3, type)

Arguments

У	is the response vector
х	is a numeric vector or a data matrix
К	is the number of quantile levels
num_per	is the number of permutation times
NN	is the number of B spline basis, default is 3
type	is an indicator for measuring linear or nonlinear correlation, "linear" represents linear correlation and "nonlinear" represents linear or nonlinear correlation using B splines

Value

The p-value of the corresponding hypothesis test

Examples

```
# linear model
n=100
x=rnorm(n)
y=rnorm(n)
```

```
IVCT(y,x,K=5,num_per=20,type = "linear")
# nonlinear model
```

6

IVCTLLQ

```
n=100
p=4
x=matrix(NA,nrow=n,ncol=p)
for(i in 1:p){
    x[,i]=runif(n,0,1)
}
y=3*ifelse(x[,1]>0.5,1,0)*x[,2]+3*cos(x[,3])^2*x[,1]+3*(x[,4]^2-1)*x[,1]+rnorm(n)
IVCT(y,x,K=5,num_per=20,type = "nonlinear")
```

IVCTLLQ	Integrated	Variance	Correlation	Based	Hypothesis	Test w	vith 1	Local
	Linear Esti	mation						

Description

This function is used to test significance using integrated variance correlation with local linear estimation

Usage

IVCTLLQ(y, x, K, num_per)

Arguments

У	is a numeric vector
x	is a numeric vector
К	is the number of quantile levels
num_per	is the number of permutation times

Value

The p-value of the corresponding hypothesis test

Examples

```
n=100
x=runif(n,-1,1)
y=2*cos(2*x)+rnorm(n)
```

IVCTLLQ(y,x,K=5,num_per=100)

IVCT_Interval

Description

This function is used to test interval independence using integrated variance correlation

Usage

IVCT_Interval(y, x, tau1, tau2, K, num_per, NN = 3, type)

Arguments

У	is the response vector
х	is a numeric vector or a data matrix
tau1	is the minimum quantile level
tau2	is the maximum quantile level
К	is the number of quantile levels
num_per	is the number of permutation times
NN	is the number of B spline basis, default is 3
type	is an indicator for measuring linear or nonlinear correlation, "linear" represents linear correlation and "nonlinear" represents linear or nonlinear correlation us- ing B splines

Value

The p-value of the corresponding hypothesis test

Examples

```
require("mvtnorm")
n=100
p=3
pho1=0.5
mean_x=rep(0,p)
sigma_x=matrix(NA,nrow = p,ncol = p)
for (i in 1:p) {
   for (j in 1:p) {
      sigma_x[i,j]=pho1^(abs(i-j))
   }
}
x=rmvnorm(n, mean = mean_x, sigma = sigma_x,method = "chol")
y=rnorm(n)
```

IVCT_Interval(y,x,tau1=0.5,tau2=0.75,K=5,num_per=20,type = "linear")

```
n=100
x_til=runif(n,min=-1,max=1)
y_til=rnorm(n)
epsilon=rnorm(n)
x=x_til+2*epsilon*ifelse(x_til<=-0.5&y_til<=-0.675,1,0)
y=y_til+2*epsilon*ifelse(x_til<=-0.5&y_til<=-0.675,1,0)
IVCT_Interval(y,x,tau1=0.6,tau2=0.8,K=5,num_per=20,type = "nonlinear")</pre>
```

IVC_crit	Critical Values for Integrated Variance Correlation Based Hypothesis
	Test

Description

This function is used to calculate the critical values for integrated variance correlation test at significance level 0.1, 0.05 and 0.01

Usage

IVC_crit(N = 500, realizations)

Arguments

Ν	is a integer as large as possible, default is 500
realizations	is the the number of replication times for simulating the distribution under the null hypothesis

Value

The critical values at significance level 0.1, 0.05 and 0.01

Examples

IVC_crit(N=500,realizations=100)

IVC_Interval

Description

This function is used to calculate the integrated variance correlation to measure interval independence

Usage

IVC_Interval(y, x, K, tau1, tau2, NN = 3, type)

Arguments

У	is a numeric vector
х	is a numeric vector or a data matrix
К	is the number of quantile levels
tau1	is the minimum quantile level
tau2	is the maximum quantile level
NN	is the number of B spline basis, default is 3
type	is an indicator for measuring linear or nonlinear correlation, "linear" represents linear correlation and "nonlinear" represents linear or nonlinear correlation us- ing B splines

Value

The value of the corresponding sample statistic for interval independence

```
# linear model
require("mvtnorm")
n=100
p=3
pho1=0.5
mean_x=rep(0,p)
sigma_x=matrix(NA,nrow = p,ncol = p)
for (i in 1:p) {
 for (j in 1:p) {
   sigma_x[i,j]=pho1^(abs(i-j))
 }
}
x=rmvnorm(n, mean = mean_x, sigma = sigma_x,method = "chol")
y=2*(x[,1]+x[,2]+x[,3])+rnorm(n)
IVC_Interval(y,x,K=5,tau1=0.4,tau2=0.6,type="linear")
# nonlinear model
```

IVC_Interval

n=100
x=runif(n,min=-2,max=2)
y=exp(x^2)*rnorm(n)

IVC_Interval(y,x,K=5,tau1=0.4,tau2=0.6,type="nonlinear")

Index

IVC, 2 IVC_crit, 9 IVC_Interval, 10 IVCCA, 3 IVCCA_crit, 5 IVCCAT, 4 IVCLLQ, 5 IVCT, 6 IVCT_Interval, 8 IVCTLLQ, 7