Package ‘HMDA’

March 27, 2025

Type Package

Title Holistic Multimodel Domain Analysis for Exploratory Machine
Learning

Version 0.1
Depends R (>=3.5.0)

Description Holistic Multimodel Domain Analysis (HMDA) is a robust and transparent frame-
work designed for exploratory machine learning research, aiming to enhance the process of fea-
ture assessment and selection. HMDA addresses key limitations of traditional machine learn-
ing methods by evaluating the consistency across multiple high-performing models within a fine-
tuned modeling grid, thereby improving the interpretability and reliability of feature impor-
tance assessments. Specifically, it computes Weighted Mean SHapley Additive exPlana-
tions (WMSHAP), which aggregate feature contributions from multiple mod-
els based on weighted performance metrics. HMDA also provides confidence intervals to demon-
strate the stability of these feature importance estimates. This framework is particularly benefi-
cial for analyzing complex, multidimensional datasets common in health research, supporting re-
liable exploration of mental health outcomes such as suicidal ideation, suicide at-
tempts, and other psychological conditions. Additionally, HMDA includes automated proce-
dures for feature selection based on WMSHAP ratios and performs dimension reduction analy-
ses to identify underlying structures among features. For more de-
tails see Haghish (2025) <doi:10.13140/RG.2.2.32473.63846>.

Imports curl (>=4.3.0), h20 (>= 3.34.0.0), shapley (>=0.5),
autoEnsemble (>= 0.3), h2otools (>= 0.4), splitTools (>=
1.0.1), psych (>=2.4.6), dplyr (>= 1.1.4), ggplot2 (>=3.4.2)

License MIT + file LICENSE
Encoding UTF-8
RoxygenNote 7.3.2

URL http://dx.doi.org/10.13140/RG.2.2.32473.63846,
https://github.com/haghish/HMDA,
https://www.sv.uio.no/psi/english/people/academic/haghish/

BugReports https://github.com/haghish/HMDA/issues

NeedsCompilation no

https://doi.org/10.13140/RG.2.2.32473.63846
http://dx.doi.org/10.13140/RG.2.2.32473.63846
https://github.com/haghish/HMDA
https://www.sv.uio.no/psi/english/people/academic/haghish/
https://github.com/haghish/HMDA/issues

best_of_family

Author E.F. Haghish [aut, cre, cph]

Maintainer E.F. Haghish <haghish@hotmail.com>
Repository CRAN

Date/Publication 2025-03-27 17:40:02 UTC

Contents
best_of family 2
check_efa e 3
dictionary e 5
hmda.adjust.params 6
hmda.autoEnsemble L o 7
hmdabestmodels 10
hmda.domain 12
hmdaefa. 14
hmda.feature.selection L oL 16
hmda.grid 19
hmda.grid.analysis L 21
hmda.init 23
hmda.partition 25
hmda.search.param 27
hmda.suggest.param e 30
hmda.wmshap 31
hmda.wmshap.table L 35
list_hyperparameter e e 37
SUZEESt_MITIES o v v v e 38

Index 40

best_of_family Select Best Models by Performance Metrics
Description

Detects all performance metric columns in a data frame, and for each metric, identifies the best
model based on whether a higher or lower value is preferred. The function returns a vector of
unique model IDs corresponding to the best models across all detected metrics.

Usage

best_of_family(df)

Arguments

df

A data frame containing model performance results. It must include a column
named "model_id" and one or more numeric columns for performance metrics.

check_efa 3

Details

The function first detects numeric columns (other than "model_id") as performance metrics. It then
uses a predefined mapping to determine the optimal direction for each metric: for example, higher
values of auc and aucpr are better, while lower values of logloss, mean_per_class_error, rmse,
and mse are preferred. For any metric not in the mapping, the function assumes that lower values
indicate better performance.

For each metric, the function identifies the row index that produces the best value according to the
corresponding direction (using which.max() or which.min()). It then extracts the model_id from
that row. The final result is a unique set of model IDs that represent the best models across all
metrics.

Value
An integer or character vector of unique model_id values corresponding to the best model for each
performance metric.

Author(s)
E. F. Haghish

check_efa Check Exploratory Factor Analysis Suitability

Description

Checks if specified features in a dataframe meet criteria for performing exploratory factor analysis
(EFA). This function verifies that each feature exists, is numeric, has sufficient variability, and does
not have an excessive proportion of missing values. For multiple features, it also assesses the full
rank of the correlation matrix and the level of intercorrelation among features.

Usage

check_efa(
df,
features,
min_unique = 5,
min_intercorrelation = 0.3,
verbose = FALSE

)
Arguments
df A dataframe containing the features.
features A character vector of feature names to be evaluated.
min_unique An integer specifying the minimum number of unique non-missing values re-

quired for a feature. Default is 5.

4 check_efa

min_intercorrelation

A numeric threshold for the minimum acceptable intercorrelation among fea-
tures. (Note: this parameter is not used explicitly in the current implementation.)
Default is 0.3.

verbose Logical; if TRUE, a confirmation message is printed when all features appear
suitable. Default is FALSE.

Details
The function performs several checks:

Existence Verifies that each feature in features is present in df.
Numeric Type Checks that each feature is numeric.
Variability Ensures that each feature has at least min_unique unique non-missing values.

Missing Values Flags features with more than 20% missing values.

If more than one feature is provided, the function computes the correlation matrix (using pairwise
complete observations) and checks:

Full Rank Whether the correlation matrix is full rank. A rank lower than the number of features
indicates redundancy.

Intercorrelations Identifies features that do not have any correlation (>= 0.4) with the other fea-
tures.

Value

TRUE if all features are deemed suitable for EFA, and FALSE otherwise. In the latter case, messages
detailing the issues are printed.

Author(s)
E. F. Haghish

Examples

Example: assess feature suitability for EFA using the USJudgeRatings dataset.
this dataset contains ratings on several aspects of U.S. federal judges' performance.
Here, we check whether these rating variables are suitable for EFA.
data("USJudgeRatings")
features_to_check <- colnames(USJudgeRatings[,-11)
result <- check_efa(

df = USJudgeRatings,

features = features_to_check,

min_unique = 3,

verbose = TRUE
)

TRUE indicates the features are suitable.
print(result)

dictionary 5

dictionary Dictionary of Variable Attributes

Description

Extracts a specified attribute from each column of a data frame and returns a dictionary as a data
frame mapping variable names to their corresponding attribute values.

Usage

dictionary(df, attribute = "label”, na.rm = TRUE)

Arguments
df A data frame whose columns may have attached attributes.
attribute A character string specifying the name of the attribute to extract from each col-
umn (e.g., "label").
na.rm Logical; if TRUE, rows for which the attribute is missing (NA) are omitted from
the output. Default is TRUE.
Details

The function iterates over each column in the input data frame df and retrieves the specified attribute
using attr (). If the attribute is not found for a column, NA is returned as its description. The result-
ing data frame acts as a dictionary for the variables, which is particularly useful for documenting
datasets during exploratory data analysis.

Value

A data frame with two columns:

name The names of the variables in df.

description The extracted attribute values from each variable.

Author(s)
E. F. Haghish

Examples

Example: Generate a dictionary of variable labels using the USJudgeRatings dataset.
This dataset contains ratings on various performance measures for U.S. federal judges.
data("USJudgeRatings")

Assume that the dataset's variables have been annotated with "label” attributes.
which is the default label read by dictionary

attr(USJudgeRatings$CONT, "label") <- "Content Quality”

attr(USJudgeRatings$INTG, "label”) <- "Integrity”

6 hmda.adjust.params

attr(USJudgeRatings$DMNR, "label") <- "Demeanor”
attr(USJudgeRatings$DILG, "label") <- "Diligence”

Generate the dictionary of labels
dict <- dictionary(USJudgeRatings, "label")
print(dict)

hmda.adjust.params Adjust Hyperparameter Combinations

Description

This internal function prunes or expands a list of hyperparameters so that the total number of model
combinations, computed as the product of the lengths of each parameter vector, is near the desired
target (n_models). It first prunes the parameter with the largest number of values until the product
is less than or equal to n_models. Then, if the product is much lower than the target (less than half
of n_models), it attempts to expand the parameter with the smallest number of values by adding a
midpoint value (if numeric).

Usage

hmda.adjust.params(params, n_models)

Arguments

params A list of hyperparameter vectors.

n_models Integer. The desired target number of model combinations.
Details

The function calculates the current product of the lengths of the hyperparameter vectors. In a loop,
it removes the last element from the parameter vector with the largest length until the product is
less than or equal to n_models. If the resulting product is less than half of n_models, the function
attempts to expand the parameter with the smallest length by computing a midpoint between the
two closest numeric values. The expansion stops if no new value can be added, to avoid an infinite
loop.

Value

A list of hyperparameter vectors that has been pruned or expanded so that the product of their
lengths is near n_models.

Author(s)
E. F. Haghish

hmda.autoEnsemble 7

Examples

Example 1: Adjust a hyperparameter grid for 100 models.
params <- list(

alpha = c(0.1, 0.2, 0.3, 0.4),

beta = c(1, 2, 3, 4, 5),

gamma = c(10, 20, 30)
)
new_params <- hmda.adjust.params(params, n_models = 100)
print(new_params)

Example 2: The generated hyperparameters range between min and max of each
vector in the list
params <- list(
alpha = c(0.1, 0.2),
beta = c(1, 2, 3),
gamma = c(10, 20)
)
new_params <- hmda.adjust.params(params, n_models = 1000)
print(new_params)

hmda.autoEnsemble Build Stacked Ensemble Model Using autoEnsemble R package

Description

This function is a wrapper within the HMDA package that builds a stacked ensemble model by
combining multiple H20 models. It leverages the autoEnsemble package to stack a set of trained
models (e.g., from HMDA grid) into a stronger meta-learner. For more details on autoEnsemble,
please see the GitHub repository at https://github.com/haghish/autoEnsemble and the CRAN
package of autoEnsemble R package.

Usage

hmda. autoEnsemble(
models,
training_frame,
newdata = NULL,
family = "binary”,
strategy = c("search”),

model_selection_criteria = c("auc”, "aucpr", "mcc", "f2"),
min_improvement = 1e-05,
max = NULL,

top_rank = seq(0.01, 0.99, 0.01),
stop_rounds = 3,
reset_stop_rounds = TRUE,

stop_metric = "auc”,
seed = -1,

https://github.com/haghish/autoEnsemble

8 hmda.autoEnsemble

verbatim = FALSE

)
Arguments
models A grid object, such as HMDA grid, or a character vector of H20 model IDs.
The h20.get_ids function from h2otools can be used to extract model IDs
from grids.

training_frame An H2OFrame (or data frame already uploaded to the H20 server) that contains
the training data used to build the base models.

newdata An H20Frame (or data frame already uploaded to the H20O server) to be used
for evaluating the ensemble. If not specified, performance on the training data
is used (for instance, cross-validation performance).

family A character string specifying the model family.

strategy A character vector specifying the ensemble strategy. The available strategy is
"search” (default). The "search” strategy searches for the best combination
of top-performing diverse models.

model_selection_criteria
A character vector specifying the performance metrics to consider for model se-
lection. The defaultis c("auc”, "aucpr”, "mcc”, "f2"). Other possible crite-
riainclude "f1point5”, "f3", "f4", "f5", "kappa", "mean_per_class_error"”,
"gini", and "accuracy”.

min_improvement
Numeric. The minimum improvement in the evaluation metric required to con-
tinue the ensemble search.

max Integer. The maximum number of models for each selection criterion. If NULL,
a default value based on the top rank percentage is used.

top_rank Numeric vector. Specifies the percentage (or percentages) of the top models
that should be considered for ensemble selection. If the strategy is "search”,
the function searches for the best combination of models from the top to the
bottom ranked; if the strategy is "top”, only the first value is used. Default is
seq(0.01, 0.99, 0.01).

stop_rounds Integer. The number of consecutive rounds with no improvement in the perfor-
mance metric before stopping the search.

reset_stop_rounds
Logical. If TRUE, the stopping rounds counter is reset each time an improvement
is observed.

stop_metric Character. The metric used for early stopping; the default is "auc”. Other
options include "aucpr” and "mcc”.

seed Integer. A random seed for reproducibility. Default is -1.

verbatim Logical. If TRUE, the function prints additional progress information for debug-
ging purposes.

hmda.autoEnsemble 9

Details

This wrapper function integrates with the HMDA package workflow to build a stacked ensemble
model from a set of base H20 models. It calls the ensemble() function from the autoEnsemble
package to construct the ensemble. The function is designed to work within HMDA'’s framework,
where base models are generated via grid search or AutoML. For more details on the autoEnsemble
approach, see:

e GitHub: https://github.com/haghish/autoEnsemble
¢ CRAN: https://CRAN.R-project.org/package=autoEnsemble
The ensemble strategy "search” (default) searches for the best combination of top-performing and

diverse models to improve overall performance. The wrapper returns both the final ensemble model
and the list of top-ranked models used in the ensemble.

Value

A list containing:

model The ensemble model built by autoEnsemble.

top_models A data frame of the top-ranked base models that were used in building the ensemble.

Author(s)
E. F. Haghish

Examples

Not run:
library(HMDA)
library(h2o)
hmda.init()

Import a sample binary outcome dataset into H20

train <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_train_10k.csv")
test <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_test_5k.csv")

Identify predictors and response
y <- "response”
x <- setdiff(names(train), y)

For binary classification, response should be a factor
train[, y] <- as.factor(train[, yl)
test[, y] <- as.factor(test[, yl)

params <- list(learn_rate = c(0.01, 0.1),
max_depth = ¢c(3, 5, 9),
sample_rate = c(0.8, 1.0)

https://github.com/haghish/autoEnsemble
https://CRAN.R-project.org/package=autoEnsemble

10 hmda.best.models

Train and validate a cartesian grid of GBMs

hmda_gridl <- hmda.grid(algorithm = "gbm", x = x, y = vy,
grid_id = "hmda_grid1”,
training_frame = train,

nfolds = 10,
ntrees = 100,
seed = 1,

hyper_params = gbm_params1)

Assess the performances of the models
grid_performance <- hmda.grid.analysis(hmda_grid1)

Return the best 2 models according to each metric
hmda.best.models(grid_performance, n_models = 2)

build an autoEnsemble model & test it with the testing dataset
meta <- hmda.autoEnsemble(models = hmda_gridl, training_frame = train)

print(h2o.performance(model = meta$model, newdata = test))

End(Not run)

hmda.best.models Select Best Models Across All Models in HMDA Grid

Description

Scans a HMDA grid analysis data frame for H20 performance metric columns and, for each metric,
selects the top n_models best-performing models based on the proper optimization direction (i.e.,
lower values are better for some metrics and higher values are better for others). The function then
returns a summary data frame showing the union of these best models (without duplication) along
with the corresponding metric values that led to their selection.

Usage

hmda.best.models(df, n_models = 1)

Arguments
df A data frame of class "hmda.grid.analysis"” containing model performance
results. It must include a column named model_ids and one or more numeric
columns representing H20 performance metrics (e.g., logloss, auc, rmse, etc.).
n_models Integer. The number of top models to select per metric. Default is 1.
Details

The function uses a predefined set of H20 performance metrics along with their desired optimiza-
tion directions:

logloss, mae, mse, rmse, rmsle, mean_per_class_error Lower values are better.

hmda.best.models 11

auc, aucpr, r2, accuracy, f1, mcc, f2 Higher values are better.

For each metric in the predefined list that exists in df and is not entirely NA, the function orders the
values (using order()) according to whether lower or higher values indicate better performance.
It then selects the top n_models model IDs for that metric. The union of these model IDs is used
to subset the original data frame. The returned data frame includes the model_ids column and the
performance metric columns (from the predefined list) that were found in the input data frame.

Value

A data frame containing the rows corresponding to the union of best model IDs (across all metrics)
and the columns for model_ids plus the performance metrics that are present in the data frame.

Author(s)
E. F. Haghish

Examples

Not run:
Example: Create a hyperparameter grid for GBM models.
predictors <- c("varl1”, "var2", "var3")
response <- "target”

Define hyperparameter ranges

hyper_params <- list(
ntrees = seq(50, 150, by = 25),
max_depth = c(5, 10, 15),
learn_rate = c(0.01, 0.05, 0.1),
sample_rate = c(0.8, 1.0),
col_sample_rate = c(0.8, 1.0)

)

Run the grid search
grid <- hmda.grid(
algorithm = "gbm",
X = predictors,
y = response,
training_frame = h2o.getFrame("hmda.train.hex"),
hyper_params = hyper_params,
nfolds = 10,
stopping_metric = "AUTO"

)

Assess the performances of the models
grid_performance <- hmda.grid.analysis(grid)

Return the best 2 models according to each metric
hmda.best.models(grid_performance, n_models = 2)

End(Not run)

12 hmda.domain

hmda.domain compute and plot weighted mean SHAP contributions at group level
(factors or domains)

Description

This function applies different criteria to visualize SHAP contributions

Usage

hmda . domain(
shapley,
domains,
plot = "bar”,
legendstyle = "continuous”,
scale_colour_gradient = NULL,
print = FALSE

)
Arguments

shapley object of class ’shapley’, as returned by the ’shapley’ function

domains character list, specifying the domains for grouping the features’ contributions.
Domains are clusters of features’ names, that can be used to compute WMSHAP
at higher level, along with their 95 better understand how a cluster of features
influence the outcome. Note that either of ’features’ or ’domains’ arguments can
be specified at the time.

plot character, specifying the type of the plot, which can be either *bar’, *waffle’, or

’shap’. The default is "bar’.

legendstyle character, specifying the style of the plot legend, which can be either ’contin-
uous’ (default) or ’discrete’. the continuous legend is only applicable to ’shap’
plots and other plots only use ’discrete’ legend.

scale_colour_gradient
character vector for specifying the color gradients for the plot.

print logical. if TRUE, the WMSHAP summary table for the given row is printed

Value

ggplot object

Author(s)
E. F. Haghish

hmda.domain

Examples

Not run:
library(HMDA)
library(h2o)
hmda.init()

Import a sample binary outcome dataset into H20

train <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_train_10k.csv")
test <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_test_5k.csv")

Identify predictors and response
y <- "response”
x <- setdiff(names(train), y)

For binary classification, response should be a factor
train[, y] <- as.factor(train[, y1)
test[, yl] <- as.factor(test[, yl)

params <- list(learn_rate = c(0.01, 0.1),
max_depth = ¢c(3, 5, 9),
sample_rate = c(0.8, 1.0)
)

Train and validate a cartesian grid of GBMs

hmda_gridl <- hmda.grid(algorithm = "gbm”, x = x, y =y,
grid_id = "hmda_grid1”,
training_frame = train,

nfolds = 10,
ntrees = 100,
seed = 1,

hyper_params = params)

Assess the performances of the models
grid_performance <- hmda.grid.analysis(hmda_grid1)

Return the best 2 models according to each metric
hmda.best.models(grid_performance, n_models = 2)

build an autoEnsemble model & test it with the testing dataset
meta <- hmda.autoEnsemble(models = hmda_gridl, training_frame = train)
print(h2o.performance(model = meta$model, newdata = test))

compute weighted mean shap values
wmshap <- hmda.wmshap(models = hmda_grid1,
newdata = test,

performance_metric = "aucpr”,
standardize_performance_metric = FALSE,
performance_type = "xval",

minimum_performance = 0,
method = "mean”,

14 hmda.efa

cutoff = 0.01,
plot = TRUE)

define domains to combine their WMSHAP values

There are different ways to specify a cluster of features or even

a group of factors that touch on a broader domain. HMDA includes
exploratory factor analysis procedure to help with this process

(see ?hmda.efa function). Here, "assuming” that we have good reasons
to combine some of the features under some clusters:

HOHF H H OHF ¥ OH R

domains = list(Groupl = c("x22", "x18", "x14", "x1", "x10", "x4"),
Group2 = c(”x25", "x23", "x6", "x27"),
Group3 = c("x28", "x26"))

hmda.domain(shapley = wmshap,
plot = "bar”,
domains = domains,
print = TRUE)

End(Not run)

hmda.efa Perform Exploratory Factor Analysis with HMDA

Description

Performs exploratory factor analysis (EFA) on a specified set of features from a data frame using the
psych package. The function optionally runs parallel analysis to recommend the number of factors,
applies a rotation method, reverses specified features, and cleans up factor loadings by zeroing out
values below a threshold. It then computes factor scores and reliability estimates, and finally returns
a list containing the EFA results, cleaned loadings, reliability metrics, and factor correlations.

Usage
hmda.efa(
df,
features,
algorithm = "minres”,
rotation = "promax”,

parallel.analysis = TRUE,

nfactors = NULL,

dict = dictionary(df, attribute = "label"),
minimum_loadings = 0.3,

exclude_features = NULL,

ignore_binary = TRUE,

intercorrelation = 0.3,

reverse_features = NULL,

hmda.efa 15

plot = FALSE,
factor_names = NULL,
verbose = TRUE

)
Arguments
df A data frame containing the items for EFA.
features A vector of feature names (or indices) in df to include in the factor analysis.
algorithm Character. The factor extraction method to use. Default is "minres”. Other
methods supported by psych (e.g., "ml", "minchi") may also be used.
rotation Character. The rotation method to apply to the factor solution. Default is

"promax”.

parallel.analysis
Logical. If TRUE, runs parallel analysis using psych: : fa.parallel to recom-
mend the number of factors. Default is TRUE.

nfactors Integer. The number of factors to extract. If NULL and parallel.analysis =
TRUE, the number of factors recommended by the parallel analysis is used.

dict A data frame dictionary with at least two columns: "name"” and "description”.
Used to replace feature names with human-readable labels. Defaultis dictionary (df,
attribute = "label”).
minimum_loadings
Numeric. Any factor loading with an absolute value lower than this threshold is
set to zero. Default is 0. 30.
exclude_features
Character vector. Features to exclude from the analysis. Default is NULL.

ignore_binary Logical. If TRUE, binary items may be ignored in the analysis. Default is TRUE.
intercorrelation
Numeric. (Unused in current version) Intended to set a minimum intercorrela-
tion threshold between items. Default is 0. 3.
reverse_features
A vector of feature names for which the scoring should be reversed prior to
analysis. Default is NULL.

plot Logical. If TRUE, a factor diagram is plotted using psych: : fa.diagram. Default
is FALSE.

factor_names Character vector. Optional names to assign to the extracted factors (i.e., new
column names for loadings).

verbose Logical. If TRUE, the factor loadings are printed in the console.

Details

This function first checks that the number of factors is either provided or determined via paral-
lel analysis (if parallel.analysis is TRUE). A helper function trans() is defined to reverse
and standardize item scores for features specified in reverse_features. Unwanted features can
be excluded via exclude_features. The EFA is then performed using psych::fa() with the

16 hmda.feature.selection

chosen extraction algorithm and rotation method. Loadings are cleaned by zeroing out values
below the minimum_loadings threshold, rounded, and sorted. Factor scores are computed with
psych::factor.scores() and reliability is estimated using the omega() function. Finally, factor
correlations are extracted from the EFA object.

Value
A list with the following components:

parallel.analysis The output from the parallel analysis, if run.
efa The full exploratory factor analysis object returned by psych: : fa.

efa_loadings A matrix of factor loadings after zeroing out values below the minimum_loadings
threshold, rounded and sorted.

efa_reliability The reliability results (omega) computed from the factor scores.
factor_correlations A matrix of factor correlations, rounded to 2 decimal places.

Author(s)
E. F. Haghish

Examples

Example: assess feature suitability for EFA using the USJudgeRatings dataset.
this dataset contains ratings on several aspects of U.S. federal judges' performance.
Here, we check whether these rating variables are suitable for EFA.
data("USJudgeRatings")
features_to_check <- colnames(USJudgeRatings[,-11)
result <- check_efa(

df = USJudgeRatings,

features = features_to_check,

min_unique = 3,

verbose = TRUE
)

TRUE indicates the features are suitable.
print(result)

hmda.feature.selection
Feature Selection Based on Weighted SHAP Values

Description

This function selects "important”, "inessential", and "irrelevant" features based on a summary of
weighted mean SHAP values obtained from a prior analysis. It uses the SHAP summary table
(found in the wmshap object) to identify features that are deemed important according to a specified
method and cutoff. Features with a lower confidence interval (lowerCI) below zero are labeled
as "irrelevant", while the remaining features are classified as "inessential" if they do not meet the
importance criteria.

hmda.feature.selection

Usage

17

hmda. feature.selection(

wmshap,

method = c("mean”),
cutoff = 0.01,
top_n_features = NULL

)

Arguments

wmshap

method

cutoff

top_n_features

Details

A list object (typically returned by a weighted SHAP analysis) that must contain
a data frame summaryShaps with at least the columns "feature"”, "mean”, and
"lowerCI”. It may also contain additional columns for alternative selection

methods.

Character. Specify the method for selecting important features based on their
weighted mean SHAP ratios. The default is "mean”, which selects features
whose weighted mean shap ratio (WMSHAP) exceeds the cutoff. The alter-
native is "lowerCI”, which selects features whose lower bound of confidence
interval exceeds the cutoff.

Numeric. The threshold cutoff for the selection method. Features with a weighted
SHAP value (or ratio) greater than or equal to this value are considered impor-
tant. Default is 0.01.

Integer. If specified, the function selects the top top_n_features features
(based on the sorted SHAP mean values), overriding the cutoff and method ar-
guments. If NULL, all features that meet the cutoff criteria are used. Default is
NULL.

The function performs the following steps:

A

Retrieves the SHAP summary table from the wmshap object.

Sorts the summary table in descending order based on the mean SHAP value.
Identifies all features available in the summary.

Classifies features as irrelevant if their lowerCI value is below zero.

If top_n_features is not specified, selects important features as those whose value for the

specified method column meets or exceeds the cutoff; the remaining features (excluding
those marked as irrelevant) are classified as inessential.

6. If top_n_features is provided, the function selects the top n features (based on the sorted
order) as important, with the rest (excluding irrelevant ones) being inessential.

Value

A list with three elements:

important A character vector of features deemed important.

18 hmda.feature.selection

inessential A character vector of features considered inessential (present in the data but not meeting
the importance criteria).

irrelevant A character vector of features deemed irrelevant, defined as those with a lower confi-
dence interval (lowerCI) below zero.

Author(s)
E. F. Haghish

Examples

Not run:
library(HMDA)
library(h20o)
hmda.init()
h2o.removeAll ()

Import a sample binary outcome dataset into H20

train <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_train_10k.csv")
test <- h2o.importFile(
"https://s3.amazonaws.com/h2o0-public-test-data/smalldata/higgs/higgs_test_5k.csv")

Identify predictors and response
y <- "response”
x <- setdiff(names(train), y)

For binary classification, response should be a factor
train[, y] <- as.factor(train[, yl)
test[, y] <- as.factor(test[, yl)

params <- list(learn_rate = c(0.01, 0.1),
max_depth = c(3, 5, 9),
sample_rate = c(0.8, 1.0)
)

Train and validate a cartesian grid of GBMs

hmda_gridl <- hmda.grid(algorithm = "gbm", x = x, y = vy,
grid_id = "hmda_grid1”,
training_frame = train,

nfolds = 10,
ntrees = 100,
seed = 1,

hyper_params = gbm_params1)

Assess the performances of the models
grid_performance <- hmda.grid.analysis(hmda_grid1)

Return the best 2 models according to each metric
hmda.best.models(grid_performance, n_models = 2)

build an autoEnsemble model & test it with the testing dataset

hmda.grid 19

meta <- hmda.autoEnsemble(models = hmda_gridl, training_frame = train)
print(h2o.performance(model = meta$model, newdata = test))

compute weighted mean shap values
wmshap <- hmda.wmshap(models = hmda_grid1,
newdata = test,

performance_metric = "aucpr”,
standardize_performance_metric = FALSE,
performance_type = "xval”,
minimum_performance = 0,

method = "mean”,

cutoff = 0.01,

plot = TRUE)

identify the important features

selected <- hmda.feature.selection(wmshap,
method = c("mean"),
cutoff = 0.01)

print(selected)

End(Not run)

hmda.grid Tune Hyperparameter Grid for HMDA Framework

Description

Generates a hyperparameter grid for a single tree-based algorithm (either "drf" or "gbm") by running
a grid search. The function validates inputs, generates an automatic grid ID for the grid (if not
provided), and optionally saves the grid to a recovery directory. The resulting grid object contains
all trained models and can be used for further analysis. For scientific computing, saving the grid is
highly recommended to avoid future re-running the training!

Usage

hmda.grid(
algorithm = c("drf"”, "gbm"),
grid_id = NULL,
X7
Y,
training_frame = h2o.getFrame(”"hmda.train.hex"),
validation_frame = NULL,
hyper_params = list(),
nfolds = 10,
seed = NULL,
keep_cross_validation_predictions = TRUE,
recovery_dir = NULL,
sort_by = "logloss”,

20 hmda.grid

Arguments

algorithm Character. The algorithm to tune. Supported values are "drf" (Distributed Ran-
dom Forest) and "gbm" (Gradient Boosting Machine). Only one algorithm can
be specified. (Case-insensitive)

grid_id Character. Optional identifier for the grid search. If NULL, an automatic grid_id
is generated using the algorithm name and the current time.

X Vector. Predictor column names or indices.

y Character. The response column name or index.

training_frame An H2OFrame containing the training data. Defaultis h20.getFrame(”hmda. train.hex").
validation_frame
An H2OFrame for early stopping. Default is NULL.

hyper_params List. A list of hyperparameter vectors for tuning. If you do not have a clue about
how to specify the hyperparameters, consider consulting hmda. suggest . param
and hmda. search.param functions, which provide suggestions based on default
values or random search.

nfolds Integer. Number of folds for cross-validation. Default is 10.

seed Integer. A seed for reproducibility. Default is NULL.
keep_cross_validation_predictions
Logical. Whether to keep cross-validation predictions. Default is TRUE.

recovery_dir Character. Directory path to save the grid search output. If provided, the grid is
saved using h20.saveGrid().

sort_by Character. Metric used to sort the grid. Default is "logloss".
Additional arguments passed to h20.grid().

Details
The function executes the following steps:

1. Input Validation: Ensures only one algorithm is specified and verifies that the training frame
is an H2OFrame.

2. Grid ID Generation: If no grid_id is provided, it creates one using the algorithm name and
the current time.

3. Grid Search Execution: Calls h20.grid() with the provided hyperparameters and cross-
validation settings.

4. Grid Saving: If arecovery directory is specified, the grid is saved to disk using h20. saveGrid().

The output is an H20 grid object that contains all the trained models.

Value

An object of class H20Grid containing the grid search results.

hmda.grid.analysis 21

Author(s)
E. F. Haghish

Examples

Not run:
library(HMDA)
library(h2o)
hmda.init()

Import a sample binary outcome dataset into H20

train <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_train_10k.csv")
test <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_test_5k.csv")

Identify predictors and response
y <- "response”
x <- setdiff(names(train), y)

For binary classification, response should be a factor
train[, y] <- as.factor(train[, y1)
test[, y] <- as.factor(test[, yl)

params <- list(learn_rate = c(0.01, 0.1),
max_depth = c(3, 5, 9),
sample_rate = c(0.8, 1.0)
)

Train and validate a cartesian grid of GBMs

hmda_gridl <- hmda.grid(algorithm = "gbm", x = x, y = vy,
grid_id = "hmda_grid1”,
training_frame = train,

nfolds = 10,
ntrees = 100,
seed = 1,

hyper_params = gbm_params1)

Assess the performances of the models
grid_performance <- hmda.grid.analysis(hmda_grid1)

Return the best 2 models according to each metric
hmda.best.models(grid_performance, n_models = 2)

End(Not run)

hmda.grid.analysis Analyze Hyperparameter Grid Performance

22 hmda.grid.analysis

Description

Reorders an HMDA grid based on a specified performance metric and supplements the grid’s sum-
mary table with additional performance metrics extracted via cross-validation. The function returns
a data frame of performance metrics for each model in the grid. This enables a detailed analysis of
model performance across various metrics such as logloss, AUC, RMSE, etc.

Usage
hmda.grid.analysis(
grid,
performance_metrics = c("logloss”, "mse”, "rmse”, "rmsle”, "auc", "aucpr",
"mean_per_class_error”, "r2"),
sort_by = "logloss"
)
Arguments
grid A HMDA grid object from which the performance summary will be extracted.

performance_metrics
A character vector of additional performance metric names to be included in the

n n n

analysis. Defaultis c("logloss”, "mse”, "rmse"”, "rmsle"”,
"r2").

sort_by A character string indicating the performance metric to sort the grid by. Default
is "logloss”. For metrics such as logloss, mae, mse, rmse, and rmsle, lower
values are better, while for metrics like AUC, AUCPR, and R2, higher values
are preferred.

n o n

auc”, "aucpr"”,"mean_per_class_err

Details
The function performs the following steps:

1. Grid Reordering: It calls h20.getGrid() to reorder the grid based on the sort_by metric.
For metrics like "logloss", "mse", "rmse", and "rmsle", sorting is in ascending order; for
others, it is in descending order.

2. Performance Table Extraction: The grid’s summary table is converted into a data frame.

3. Additional Metric Calculation: For each metric specified in performance_metrics (other
than the one used for sorting), the function initializes a column with NA values and iterates
over each model in the grid (via its model_ids) to extract the corresponding cross-validated
performance metric using functions such as h2o.auc(), h2o.rmse(), etc. For threshold-based
metrics (e.g., f1, f2, mcc, kappa), it retrieves performance via h2o.performance().

4. Return: The function returns the merged data frame of performance metrics.

Value

A data frame of class "hmda.grid.analysis” that contains the merged performance summary
table. This table includes the default metrics from the grid summary along with the additional
metrics specified by performance_metrics (if available). The data frame is sorted according to
the sort_by metric.

hmda.init

Author(s)
E. F. Haghish

Examples

Not run:
NOTE: This example may take a long time to run on your machine

Initialize H20 (if not already running)
library(HMDA)

library(h2o)

hmda.init()

Import a sample binary outcome train/test set into H20

train <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_train_10k.csv")
test <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_test_5k.csv")

Identify predictors and response
y <- "response”
x <- setdiff(names(train), y)

For binary classification, response should be a factor
train[, y] <- as.factor(train[, yl)
test[, y] <- as.factor(test[, yl)

Run the hyperparameter search using DRF and GBM algorithms.
result <- hmda.search.param(algorithm = c("gbm"),
X = X,
y=y,
training_frame = train,
max_models = 100,
nfolds = 10,
stopping_metric = "AUC",
stopping_rounds = 3)

Assess the performances of the models
grid_performance <- hmda.grid.analysis(gbm_grid1)

Return the best 2 models according to each metric
hmda.best.models(grid_performance, n_models = 2)

End(Not run)

23

hmda.init Initialize or Restart H20 Cluster for HUDA Analysis

24

Description

hmda.init

Initializes or restarts an H2O cluster configured for Holistic Multimodel Domain Analysis. It sets
up the cluster with specified CPU threads, memory, and connection settings. It first checks for an
existing cluster, shuts it down if found, and then repeatedly attempts to establish a new connection,
retrying up to 10 times if necessary.

Usage

hmda.init(
cpu = -1,
ram = NULL,
java = NULL,
ip = "localhost”,
port = 54321,
verbatim = FALSE,
restart = TRUE,
shutdown = FALSE,

ignore_config = TRUE,
bind_to_localhost = FALSE,

Arguments

cpu integer. The number of CPU threads to use. -1 indicates all available threads.
Default is -1.

ram numeric. Minimum memory (in GB) for the cluster. If NULL, all available
memory is used.

java character. Path to the Java JDK. If provided, sets JAVA_HOME accordingly.

ip character. The IP address for the H2O server. Default is "localhost".

port integer. The port for the H20 server. Default is 54321.

verbatim logical. If TRUE, prints detailed cluster info. Default is FALSE.

restart logical. if TRUE, the server is erased and restarted

shutdown logical. if TRUE, the server is closed

ignore_config

logical. If TRUE, ignores any existing H20 configuration. Default is TRUE.

bind_to_localhost

Details

logical. If TRUE, restricts access to the cluster to the local machine. Default is
FALSE.

Additional arguments passed to h20.init().

The function sets JAVA_HOME if a Java path is provided. It checks for an existing cluster via
h2o.clusterInfo(). If found, the cluster is shut down and the function waits 5 seconds. It then
attempts to initialize a new cluster using h2o0.init() with the specified settings. On failure, it retries
every 3 seconds, up to 10 attempts. If all attempts fail, an error is thrown.

hmda.partition 25

Value

An object representing the connection to the H20O cluster.

Author(s)
E. F. Haghish

Examples

Not run:
Example 1: Initialize the H20 cluster with default settings.
library(hmda)
hmda.init()

Example 2: Initialize with specific settings such as Java path.
conn <- hmda.init(

cpu = 4,

ram = 8,

java = "/path/to/java”, #e.g., "C:/Program Files/Java/jdk1.8.0_241"
ip = "localhost”,

port = 54321,

verbatim = TRUE
)

check the status of the h2o connection
h20::h20.clusterInfo(conn) #you can use h2o functions to interact with the server

End(Not run)

hmda.partition Partition Data for HMDA Analysis

Description

Partition a data frame into training, testing, and optionally validation sets, and upload these sets to a
local H20 server. If an outcome column y is provided and is a factor or character, stratified splitting
is used; otherwise, a random split is performed. The proportions must sum to 1.

Usage
hmda.partition(
df,
y = NULL,
train = 0.8,
test = 0.2,
validation = NULL,
seed = 2025

26 hmda.partition

Arguments
df A data frame to partition.
y A string with the name of the outcome column. Must match a column in df.
train A numeric value for the proportion of the training set.
test A numeric value for the proportion of the testing set.
validation Optional numeric value for the proportion of the validation set. Default is NULL.
If specified, train + test + validation must equal 1.
seed A numeric seed for reproducibility. Default is 2025.
Details

This function uses the splitTools package to perform the partition. When y is provided and is a
factor or character, a stratified split is performed to preserve class proportions. Otherwise, a basic
random split is used. The partitions are then converted to H20 frames using h2o: :as.h20().

Value

A named list containing the partitioned data frames and their corresponding H20 frames:

hmda.train Training set (data frame).

hmda.test Testing set (data frame).
hmda.validation Validation set (data frame), if any.
hmda.train.hex Training set as an H20 frame.
hmda.test.hex Testing set as an H20 frame.

hmda.validation.hex Validation set as an H20 frame, if applicable.

Author(s)
E. F. Haghish
Examples
Not run:
Example: Random split (80% train, 20% test) using iris data
data(iris)
splits <- hmda.partition(
df = iris,
train = 0.8,
test = 0.2,
seed = 2025

)
train_data <- splits$hmda.train
test_data <- splits$hmda.test

Example: Stratified split (70% train, 15% test, 15% validation)
using iris data, stratified by Species
splits_strat <- hmda.partition(

hmda.search.param 27

df = iris,

y = "Species”,

train = 0.7,

test = 0.15,

validation = 0.15,

seed = 2025

)

train_strat <- splits_strat$hmda.train
test_strat <- splits_strat$hmda.test
valid_strat <- splits_strat$hmda.validation

End(Not run)

hmda. search.param Search for Hyperparameters via Random Search

Description

Runs an automated hyperparameter search and returns several summaries of the hyperparameter
grids as well as detailed hyperparameters from each model, and then produces multiple summaries
based on different strategies. These strategies include:

Best of Family Selects the best model for each performance metric (avoiding duplicate model IDs).

Top 2 Extracts hyperparameter settings from the top 2 models (according to a specified ranking
metric).

Top 5 Extracts hyperparameter settings from the top 5 models.
Top 10 Extracts hyperparameter settings from the top 10 models.

These summaries help in identifying candidate hyperparameter ranges for further manual tuning.
Note that a good suggestion depends on the extent of random search you carry out.

Usage

hmda. search.param(
algorithm = c("drf"”, "gbm"),
sort_by = "logloss”,
X,
Y,
training_frame = h2o.getFrame("hmda.train.hex"),
validation_frame = NULL,
max_models = 100,
max_runtime_secs = 3600,
nfolds = 10,
seed = NULL,
fold_column = NULL,
weights_column = NULL,
keep_cross_validation_predictions = TRUE,

28 hmda.search.param

stopping_rounds = NULL,
stopping_metric = "AUTO",
stopping_tolerance = NULL,

)
Arguments

algorithm Character vector. The algorithm to include in the random search. Supported
values include "drf" (Distributed Random Forest) and "gbm" (Gradient Boosting
Machine). The input is case-insensitive.

sort_by Character string specifying the metric used to rank models. For metrics not in
"logloss"”, "mean_per_class_error”, "rmse"”, "mse”, lower values indicate
better performance; for these four metrics, higher values are preferred.

X Vector of predictor column names or indices.

y Character string specifying the response column.

training_frame An H2OFrame containing the training data. Defaultis h20.getFrame(”hmda.train.hex").
validation_frame
An H2OFrame for early stopping. Default is NULL.
max_models Integer. Maximum number of models to build. Default is 100.
max_runtime_secs

integer. Amount of time (in seconds) that the model should keep searching.
Default is 3600.

nfolds Integer. Number of folds for cross-validation. Default is 10.
seed Integer. A seed for reproducibility. Default is NULL.
fold_column Character. Column name for cross-validation fold assignment. Default is NULL.

weights_column Character. Column name for observation weights. Default is NULL.
keep_cross_validation_predictions

Logical. Whether to keep cross-validation predictions. Default is TRUE.
stopping_rounds

Integer. Number of rounds with no improvement before early stopping. Default

is NULL.
stopping_metric

Character. Metric to use for early stopping. Default is "AUTO".
stopping_tolerance

Numeric. Relative tolerance for early stopping. Default is NULL.

Additional arguments passed to h2o0.automl ().

Details

The function executes an automated hyperparameter search for the specified algorithm. It then
extracts the leaderboard from the H2OAutoML object and retrieves detailed hyperparameter infor-
mation for each model using automlModelParam() from the h2otools package. The leaderboard
and hyperparameter data are merged by the model_id column. Sorting of the merged results is per-
formed based on the sort_by metric. For metrics not in "logloss"”, "mean_per_class_error”,

hmda.search.param 29

"rmse”,
ferred.

mse"”, lower values are considered better; for these four metrics, higher values are pre-

After sorting, the function applies three strategies to summarize the hyperparameter search:
1. Best of Family: Selects the best model for each performance metric, ensuring that no model
ID appears more than once.
2. Top 2: Gathers hyperparameter settings from the top 2 models.

3. Top 5 and Top 10: Similarly, collects hyperparameter settings from the top 5 and top 10
models, respectively.

4. AllL: List all the hyperparameters that were tried

These strategies provide different levels of granularity for analyzing the hyperparameter space and
can be used for prototyping and further manual tuning.

Value

A list with the following components:

grid_search The H2OAutoML object returned by random search

leaderboard A merged data frame that combines leaderboard performance metrics with hyper-
parameter settings for each model. The data frame is sorted based on the specified ranking
metric.

hyperparameters_best_of_family A summary list of the best hyperparameter settings for each
performance metric. This strategy selects the best model per metric while avoiding duplicate
model IDs.

hyperparameters_top2 A list of hyperparameter settings from the top 2 models as ranked by the
chosen metric.

hyperparameters_topS A list of hyperparameter settings from the top 5 models.
hyperparameters_top10 A list of hyperparameter settings from the top 10 models.

Examples

Not run:
NOTE: This example may take a long time to run on your machine

Initialize H20 (if not already running)
library(HMDA)

library(h2o)

hmda.init()

Import a sample binary outcome train/test set into H20

train <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_train_10k.csv")
test <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_test_5k.csv")

Identify predictors and response
y <- "response”
x <- setdiff(names(train), y)

30

hmda.suggest.param

For binary classification, response should be a factor

train[, y] <- as.factor(train[, yl)
test[, y] <- as.factor(test[, yl)

Run the hyperparameter search using DRF and

GBM algorithms.

result <- hmda.search.param(algorithm = c("gbm"),

X = X,

y =y,

training_frame = train,
max_models = 100,
nfolds = 10,

stopping_metric =
stopping_rounds =

nAUCu ,
3)

Access the hyperparameter list of the best_of_family strategy:

result$best_of_family

Access the hyperparameter of the top5 models based on the specified ranking parameter

result$top5

End(Not run)

hmda. suggest.param

Suggest Hyperparameters for tuning HMUDA Grids

Description

Suggests candidate hyperparameter values for tree-based algorithms. It computes a hyperparameter
grid whose total number of model combinations is near a specified target. For GBM models, de-
fault candidates include max_depth, ntrees, learn_rate, sample_rate, and col_sample_rate. For DRF
models, if a vector of predictor variables (x) and a modeling family ("regression" or "classificaiton")

are provided, a vector of mtries is also suggested.

Usage

hmda.suggest.param(algorithm, n_models, x = NULL, family = NULL)

Arguments

algorithm A character string specifying the algorithm, which can be either "gbm" (gradient
boosting machines) or "drf" (distributed random forest).

n_models An integer for the desired approximate number of model combinations in the
grid. Must be at least 100.

X (Optional) A vector of predictor names. If provided and its length is at least 20,
it is used to compute mtries for DRF.a

family (Optional) A character string indicating the modeling family. Must be either

"classification" or "regression”. This is used with x to suggest mtries.

hmda.wmshap 31

Details

The function first checks that n_models is at least 100, then validates the family parameter if
provided. The algorithm name is normalized to lowercase and must be either "gbm" or "drf". For
"gbm", a default grid of hyperparameters is defined. For "drf", if both x and family are provided,
the function computes mtries via suggest_mtries(). If not, a default grid is set without mtries.
Finally, the candidate grid is pruned or expanded using hmda.adjust.params() so that the total
number of combinations is near n_models.

Value

A named list of hyperparameter value vectors. This list is suitable for use with HMDA and H20
grid search functions.

Examples

Not run:
library(h2o)
h2o0.init()

Example 1: Suggest hyperparameters for GBM with about 120 models.
params_gbm <- hmda.suggest.param(”gbm", n_models = 120)
print(params_gbm)

Example 2: Suggest hyperparameters for DRF (classification) with
100 predictors.
params_drf <- hmda.suggest.param(

algorithm = "drf",

n_models = 150,

X = paste@("V", 1:100),

family = "classification”

)

print(params_drf)

End(Not run)

hmda.wmshap Compute Weighted Mean SHAP Values and Confidence Intervals via
shapley algorithm

Description

This function is a wrapper for shapley package that computes the Weighted Mean SHAP (WMSHAP)
values and corresponding confidence intervals for a grid of models (or an ensemble of base-learners)
by calling the shapley() function. It uses the specified performance metric to assess the models’
performances and use the metric as a weight and returns both the weighted mean SHAP values and,
if requested, a plot of these values with confidence intervals. This approach considers the variabil-
ity of feature importance across multiple models rather than reporting SHAP values from a single
model. for more details about shapley algotithm, see https://github.com/haghish/shapley

https://github.com/haghish/shapley

32 hmda.wmshap

Usage

hmda . wmshap (
models,
newdata,
plot = TRUE,
performance_metric = "r2",
standardize_performance_metric = FALSE,
performance_type = "xval”,
minimum_performance = 0,
method = c("mean”),
cutoff = 0.01,
top_n_features = NULL,
n_models = 10,
sample_size = nrow(newdata)

)
Arguments
models A grid object, an AutoML grid, an autoEnsemble object, or a character vector
of H20 model IDs from which the SHAP values will be computed.
newdata An H2OFrame (or data frame already uploaded to the H2O server) on which the
SHAP values will be evaluated.
plot Logical. If TRUE, a plot of the weighted mean SHAP values along with their

confidence intervals is generated. Default is TRUE.

performance_metric
Character. Specifies the performance metric to be used as weights for the SHAP
values. The default is "r2". For binary classification, alternatives include
"aucpr”, "auc”, and "f2".

standardize_performance_metric
Logical. If TRUE, the performance metric (used as the weights vector) is stan-
dardized so that the sum of the weights equals the length of the vector. Default
is FALSE

performance_type
Character. Specifies whether the performance metric should be retrieved from
the training data ("train"), validation data ("valid"), or cross-validation ("xval").
Default is "xval”.

minimum_performance
Numeric. The minimum performance threshold; any model with a performance
equal to or lower than this threshold will have a weight of zero in the weighted
SHAP calculation. Default is 0.

method Character. Specify the method for selecting important features based on their
weighted mean SHAP ratios. The default is "mean”, which selects features
whose weighted mean shap ratio (WMSHAP) exceeds the cutoff. The alter-
native is "lowerCI"”, which selects features whose lower bound of confidence
interval exceeds the cutoff.

cutoff Numeric. The cutoff value used in the feature selection method (defaultis 0.01).

hmda.wmshap 33

top_n_features Integer. If specified, only the top n features with the highest weighted SHAP
values will be selected, overriding the cutoff and method. Default is NULL, which
means all features are considered.

n_models Integer. The minimum number of models that must meet the minimum_performance
criterion in order to compute the weighted mean and confidence intervals of
SHAP values. Set to 1 if a global summary for a single model is desired. The
default is 10.

sample_size Integer. The number of rows in newdata to use for the SHAP evaluation. By
default, all rows of newdata are used.

Details

This function is designed as a wrapper for the HMDA package and calls the shapley() function
from the shapley package. It computes the weighted average of SHAP values across multiple
models, using a specified performance metric (e.g., R Squared, AUC, etc.) as the weight. The
performance metric can be standardized if required. Additionally, the function selects top features
based on different methods (e.g., "mean” or "lowerCI") and can limit the number of features con-
sidered via top_n_features. The n_models parameter controls how many models must meet a
minimum performance threshold to be included in the weighted SHAP calculation.

For more information on the shapley and WMSHAP approaches used in HMDA, please refer to the
shapley package documentation and the following resources:

* shapley GitHub: https://github.com/haghish/shapley

* shapley CRAN: https://CRAN.R-project.org/package=shapley

Value
A list with the following components:

plot A ggplot2 object showing the weighted mean SHAP values and confidence intervals (if plot
= TRUE).

shap_values A data frame of the weighted mean SHAP values and confidence intervals for each
feature.

performance A data frame of performance metrics for all models used in the analysis.

model_ids A vector of model IDs corresponding to the models evaluated.

a list including the GGPLOT?2 object, the data frame of SHAP values, and performance metric of
all models, as well as the model IDs.

Author(s)
E. F. Haghish

Examples

Not run:
library(HMDA)
library(h2o)
hmda.init()

https://github.com/haghish/shapley
https://CRAN.R-project.org/package=shapley

hmda.wmshap

Import a sample binary outcome dataset into H20

train <- h2o.importFile(
"https://s3.amazonaws.com/h20-public-test-data/smalldata/higgs/higgs_train_10k.csv")
test <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_test_5k.csv")

Identify predictors and response
y <- "response”
x <- setdiff(names(train), y)

For binary classification, response should be a factor
train[, y] <- as.factor(train[, y1)
test[, y] <- as.factor(test[, yl)

params <- list(learn_rate = c(0.01, 0.1),
max_depth = c(3, 5, 9),
sample_rate = c(0.8, 1.0)
)

Train and validate a cartesian grid of GBMs

hmda_gridl <- hmda.grid(algorithm = "gbm”", x = x, y =y,
grid_id = "hmda_grid1”,
training_frame = train,

nfolds = 10,
ntrees = 100,
seed = 1,

hyper_params = gbm_params1)

Assess the performances of the models
grid_performance <- hmda.grid.analysis(hmda_grid1)

Return the best 2 models according to each metric
hmda.best.models(grid_performance, n_models = 2)

build an autoEnsemble model & test it with the testing dataset
meta <- hmda.autoEnsemble(models = hmda_gridl, training_frame = train)
print(h2o.performance(model = meta$model, newdata = test))

compute weighted mean shap values
wmshap <- hmda.wmshap(models = hmda_grid1,
newdata = test,

performance_metric = "aucpr”,
standardize_performance_metric = FALSE,
performance_type = "xval",
minimum_performance = 0,

method = "mean”,

cutoff = 0.01,

plot = TRUE)

identify the important features
selected <- hmda.feature.selection(wmshap,
method = c("mean"),

hmda.wmshap.table 35

cutoff = 0.01)
print(selected)

View the plot of weighted mean SHAP values and confidence intervals
print(wmshap$plot)

End(Not run)

hmda.wmshap. table Create SHAP Summary Table Based on the Given Criterion

Description

Generates a summary table of weighted mean SHAP (WMSHAP) values and confidence intervals
for each feature based on a weighted SHAP analysis. The function filters the SHAP summary table
(from a wmshap object) by selecting features that meet or exceed a specified cutoff using a selection
method (default "mean"). It then sorts the table by the mean SHAP value, formats the SHAP values
along with their 95% confidence intervals into a single string, and optionally adds human-readable
feature descriptions from a provided dictionary. The output is returned as a markdown table using
the pander package, or as a data frame if requested.

Usage
hmda.wmshap. table(
wmshap,
method = c("mean”),
cutoff = 0.01,
round = 3,

exclude_features = NULL,

dict = dictionary(raw, attribute = "label"),
markdown.table = TRUE,

split.tables = 120,

split.cells = 50

)
Arguments

wmshap A wmshap object, returned by the hmda.wmshap function containing a data
frame summaryShaps.

method Character. Specify the method for selecting important features based on their
weighted mean SHAP ratios. The default is "mean”, which selects features
whose weighted mean shap ratio (WMSHAP) exceeds the cutoff. The alter-
native is "lowerCI"”, which selects features whose lower bound of confidence
interval exceeds the cutoff.

cutoff Numeric. The threshold cutoff for the selection method; only features with a

value in the method column greater than or equal to this value are retained.
Defaultis 0.01.

36 hmda.wmshap.table

round Integer. The number of decimal places to round the SHAP mean and confidence
interval values. Default is 3.

exclude_features
Character vector. A vector of feature names to be excluded from the summary
table. Default is NULL.

dict A data frame containing at least two columns named "name” and "description”.
If provided, the function uses this dictionary to add human-readable feature de-
scriptions. Default is NULL.

markdown.table Logical. If TRUE, the output is formatted as a markdown table using the pander
package; otherwise, a data frame is returned. Default is TRUE.

split.tables Integer. Controls table splitting in pander (). Default is 120.
split.cells Integer. Controls cell splitting in pander (). Default is 50.

Value

If markdown. table = TRUE, returns a markdown table (invisibly) showing two columns: "Description
and "WMSHAP”. If markdown. table = FALSE, returns a data frame with these columns.

Author(s)
E. F. Haghish

Examples

Not run:
library(HMDA)
library(h2o)
hmda.init()

Import a sample binary outcome dataset into H20

train <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_train_10k.csv")
test <- h2o.importFile(
"https://s3.amazonaws.com/h2o-public-test-data/smalldata/higgs/higgs_test_5k.csv")

Identify predictors and response
y <- "response”
x <- setdiff(names(train), y)

For binary classification, response should be a factor
train[, y] <- as.factor(train[, yl)
test[, y] <- as.factor(test[, yl)

params <- list(learn_rate = c(0.01, 0.1),
max_depth = c(3, 5, 9),
sample_rate = c(0.8, 1.0)
)

Train and validate a cartesian grid of GBMs
hmda_gridl <- hmda.grid(algorithm = "gbm”, x = x, y = vy,

n

list_hyperparameter 37

grid_id = "hmda_grid1”,
training_frame = train,

nfolds = 10,
ntrees = 100,
seed = 1,

hyper_params = gbm_params1)

Assess the performances of the models
grid_performance <- hmda.grid.analysis(hmda_grid1)

Return the best 2 models according to each metric
hmda.best.models(grid_performance, n_models = 2)

build an autoEnsemble model & test it with the testing dataset
meta <- hmda.autoEnsemble(models = hmda_gridl, training_frame = train)
print(h2o.performance(model = meta$model, newdata = test))

compute weighted mean shap values
wmshap <- hmda.wmshap(models = hmda_gridi,
newdata = test,

performance_metric = "aucpr”,
standardize_performance_metric = FALSE,
performance_type = "xval”,
minimum_performance = 0,

method = "mean”,

cutoff = 0.01,

plot = TRUE)

identify the important features

selected <- hmda.feature.selection(wmshap,
method = c("mean”),
cutoff = 0.01)

print(selected)

View the plot of weighted mean SHAP values and confidence intervals
print(wmshap$plot)

get the wmshap table output in Markdown format:
md_table <- shapley.table(wmshap = wmshap,

method = "mean”,
cutoff = 0.01,
round = 3,

markdown. table = TRUE)
head(md_table)

End(Not run)

list_hyperparameter Create Hyperparameter List from a leaderboard dataset

38 suggest_mtries

Description
Detects columns in a data frame that contain hyperparameters for H20 DRF/GBM algorithms and
returns a list with the unique values from each parameter column.

Usage

list_hyperparameter(df)

Arguments

df A data frame containing model results with hyperparameter columns.

Details

This function scans the column names of the input data frame for common H20O hyperparameter
names, such as "ntrees"”, "max_depth", "min_rows", "sample_rate", "col_sample_rate_per_tree",
"min_split_improvement", "learn_rate", "mtries", and "seed". It extracts the unique values from
each matching column and returns them in a list. The resulting list can be used as a hyperparameter
grid for tuning via H20 grid search functions.

Value

A named list where each hyperparameter element is a vector of unique values for a hyperparameter.

Author(s)
E. F. Haghish

suggest_mtries Suggest Alternative mtries Values

Description

Provides a set of candidate values for the mtries parameter used in Random Forest models. The
suggestions are computed based on the number of predictors (p) and the modeling family. For
classification, the common default is sqrt(p), while for regression it is typically p/3. For family,
alternative candidates are offered to aid model tuning.

Usage
suggest_mtries(p, family = c("classification”, "regression"))
Arguments
p Integer. The number of features (predictors) in the dataset. This value is used to
compute candidate mtries.
family Character. Must be either "classification" or "regression". This determines the

set of candidate values.

suggest_mtries 39

Details

For classification, the default is often sqrt (p); alternative suggestions include log2(p) and p* (1/3).
For regression, the typical default is p/3, but candidates such as p/2 or p/5 may also be useful. The
best choice depends on the data structure and predictor correlations.

Value

An integer vector of candidate values for mtries.

Author(s)
E. F. Haghish

Examples

Not run:
For a classification task with 100 predictors:
suggest_mtries(p = 100, family = "classification”)

For a regression task with 100 predictors:
suggest_mtries(p = 100, family = "regression")

End(Not run)

Index

best_of_family, 2
check_efa, 3
dictionary, 5

hmda.adjust.params, 6
hmda.autoEnsemble, 7
hmda.best.models, 10
hmda.domain, 12
hmda.efa, 14
hmda.feature.selection, 16
hmda.grid, 19
hmda.grid.analysis, 21
hmda.init, 23
hmda.partition, 25
hmda.search.param, 27
hmda. suggest.param, 30
hmda.wmshap, 31
hmda.wmshap. table, 35

list_hyperparameter, 37

suggest_mtries, 38

40

	best_of_family
	check_efa
	dictionary
	hmda.adjust.params
	hmda.autoEnsemble
	hmda.best.models
	hmda.domain
	hmda.efa
	hmda.feature.selection
	hmda.grid
	hmda.grid.analysis
	hmda.init
	hmda.partition
	hmda.search.param
	hmda.suggest.param
	hmda.wmshap
	hmda.wmshap.table
	list_hyperparameter
	suggest_mtries
	Index

