Package 'FLightR'

January 20, 2025

Type Package

Title Reconstruct Animal Paths from Solar Geolocation Loggers Data

Version 0.5.5

Date 2024-06-28

Description Spatio-temporal locations of an animal are computed from annotated data with a hidden Markov model via particle filter algorithm. The package is relatively robust to varying degrees of shading.

The hidden Markov model is described in Movement Ecology -Rakhimberdiev et al. (2015) <doi:10.1186/s40462-015-0062-5>, general package description is in the Methods in Ecology and Evolution -Rakhimberdiev et al. (2017) <doi:10.1111/2041-210X.12765> and package accuracy assessed in the Journal of Avian Biology -Rakhimberdiev et al. (2016) <doi:10.1111/jav.00891>.

URL https://CRAN.R-project.org/package=FLightR

BugReports https://github.com/eldarrak/FLightR/issues

Depends R (>= 4.1.0)

Imports bit, geosphere, ggmap, ggplot2, CircStats, circular, fields, maps, mgcv, nlme, parallel, RcppArmadillo, sf, suntools, truncnorm

License GPL-3

ByteCompile true

Encoding UTF-8

RoxygenNote 7.3.1

Suggests covr, testthat, knitr, rmarkdown

VignetteBuilder knitr

NeedsCompilation no

Author Eldar Rakhimberdiev [aut, cre], Anatoly Saveliev [aut], Julia Karagicheva [aut], Simeon Lisovski [ctb], Johannes de Groeve [ctb] Maintainer Eldar Rakhimberdiev <eldar.rakhimberdiev@uva.nl>

Repository CRAN

Date/Publication 2024-07-04 17:10:06 UTC

Contents

BAStag2TAGS 2
find.stationary.location
find.times.distribution
FLightR2Movebank
GeoLight2TAGS
get.tags.data
get_ZI_distances
make.calibration
make.grid
make.prerun.object
map.FLightR.ggmap
plot_likelihood
plot_lon_lat
plot_slopes_by_location
plot_util_distr
run.particle.filter
stationary.migration.summary
twGeos2TAGS 25
26

Index

BAStag2TAGS

Function to write down twilights annotated in BAStag package data in so-called TAGS format

Description

this function converts combines twilights detected in BAStag with raw data and writes them down in TAGS format that can be easily read by get.tags.data

Usage

```
BAStag2TAGS(raw, twl, threshold, filename = NULL)
```

Arguments

raw	original data - dataframe with two columns first column must contain time and second measured light levels
twl	twilights object from preprocess.light function
threshold	threshold value used for twilight definition in preprocess.light

2

filename if NULL data.frame in TAGS format will be returned otherwise .csv file in TAGS format will be written

Details

TAGS format returned or written as .csv by this function is a dataframe with columns

datetime date and time in ISO 8601 format e.g. 2013-06-16T00:00:11.000Z

light light value measured by tag

- twilight assigned by the software numeric indication of whether the record belongs to sunrise (1), sunset (2) or none of those (0)
- excluded indication of whether a twilight was excluded during manual inspection (logical, TRUE | FALSE)

interp indication of whether the light value at twilight was interpolated (logical, TRUE | FALSE)

The fields excluded and interp may have values of TRUE only for twilight > 0.

Value

NULL if filename is provided or TAGS formatted dataframe.

Author(s)

Eldar Rakhimberdiev & Simeon Lisovski

See Also

twGeos2TAGS and GeoLight2TAGS

find.stationary.location

find unknown calibration location

Description

Functions attempts to find a location where The function attempts to find a location for a time period assuming animal was not moving. Does not work well will shaded data!

Usage

```
find.stationary.location(
   Proc.data,
   calibration.start,
   calibration.stop,
   plot = TRUE,
   initial.coords = NULL,
   print.optimization = TRUE,
   reltol = 1e-04
)
```

Arguments

Proc.data	processed data object generated by get.tags.data
calibration.sta	art
	POSIXct time when stationary period started
calibration.stc	q
	POSIXct time when stationary period ended
plot	plots every iteration
initial.coords	location vector with initial values for location (longitude and latitude). Should be close (+-2000 km from the real location)
print.optimizat	lion
	do you want every optimization iteration to be printed? If TRUE - Lon, Lat, calibration mean and calibration sd are being printed. Optimization tries to min- imize the latter.
reltol	tolerance for optimization, see optim for more details

Details

The idea behind the function is that it tries to minimize variance between slopes for the whole period by optimizing location. It can be seen as an extension of Hill-Ekstrom calibration idea.

Value

vector with coordinates - longitude and latitude.

Author(s)

Eldar Rakhimberdiev

Examples

#this example takes about 15 minutes to run

```
File<-system.file("extdata", "Godwit_TAGS_format.csv", package = "FLightR")
Proc.data<-get.tags.data(File)
plot_slopes_by_location(Proc.data=Proc.data, location=c(5.43, 52.93))
abline(v=as.POSIXct("2013-08-20", tz='GMT')) # end of first calibration period
abline(v=as.POSIXct("2014-05-05", tz='GMT')) # start of the second calibration period
Location<-find.stationary.location(Proc.data, '2013-07-20', '2013-08-20', initial.coords=c(10, 50))</pre>
```

find.times.distribution

extracts times of arrival and departure to/from spatial extent

Description

Idea of this functions is to extract schedules for known location

Usage

find.times.distribution(Result, Spatial.Index)

Arguments

Result	FLightR result object obtained from run.particle.filter
Spatial.Index	Row numbers for spatial grid (Result\$Spatial\$Grid) to estimate schedules
	for.

Value

dataframe with columns for 0.025, 0.25, 0.5, 0.75, 0.975 probability of line crossing and rows for every crossing.

Author(s)

Eldar Rakhimberdiev

FLightR2Movebank Summary of estimated locations for Movebank

Description

Summarize result object in the format required for upload to Movebank

Usage

```
FLightR2Movebank(Result, alpha = 0.5, filename = NULL)
```

Result	FLightR result object obtained from run.particle.filter
alpha	coverage of the credible intervals for now only two options: 0.95 or 0.5.
filename	if NULL data.frame in TAGS format will be returned otherwise .csv file in TAGS format will be written

Details

This function accepts FLightR results object.

Value

NULL if filename is provided or Movebank formatted dataframe.

Author(s)

Eldar Rakhimberdiev

GeoLight2TAGS	Function to write down twilights annotated in GeoLight package data
	in so-called TAGS format

Description

this function converts combines twilights detected in BAStag to twGeos with raw data and writes them down in TAGS format that can be easily read by get.tags.data

Usage

GeoLight2TAGS(raw, gl_twl, threshold, filename = NULL)

Arguments

raw	original data - dataframe with two columns first column must contain time and second measured light levels
gl_twl	twilights object from GeoLight
threshold	threshold value used for twilight definition in GeoLight
filename	if NULL data.frame in TAGS format will be returned otherwise .csv file in TAGS format will be written

Details

TAGS format returned or written as .csv by this function is a dataframe with columns

datetime date and time in ISO 8601 format e.g. 2013-06-16T00:00:11.000Z

light light value measured by tag

- twilight assigned by the software numeric indication of whether the record belongs to sunrise (1), sunset (2) or none of those (0)
- excluded indication of whether a twilight was excluded during manual inspection (logical, TRUE | FALSE)
- interp indication of whether the light value at twilight was interpolated (logical, TRUE | FALSE)

The fields excluded and interp may have values of TRUE only for twilight > 0.

get.tags.data

Value

NULL if filename is provided or TAGS formatted dataframe.

Author(s)

Eldar Rakhimberdiev & Simeon Lisovski

See Also

 $twGeos 2TAGS \ and \ BAStag 2TAGS$

get.tags.data read TAGS formatted data

Description

Reads the data frame with detected twilight events into the FLightR

Usage

```
get.tags.data(
   filename = NULL,
   start.date = NULL,
   end.date = NULL,
   log.light.borders = "auto",
   log.irrad.borders = "auto",
   saves = c("auto", "max", "mean"),
   measurement.period = NULL,
   impute.on.boundaries = FALSE
)
```

filename	the name of the file which the data are to be read from. File is supposed to
	be comma separated file of TAGS format. If it does not contain an absolute
	path, the file name is relative to the current working directory, getwd(). Tilde-
	expansion is performed where supported. This can be a compressed file (see
	file). Alternatively, file can be a readable text-mode connection (which will be
	opened for reading if necessary, and if so closed (and hence destroyed) at the
	end of the function call). File can also be a complete URL. For the supported
	URL schemes, see help for url.
start.date	date of beginning of relevant data collection in POSIXct format.
end.date	date of end of relevant data collection in POSIXct format.
<pre>log.light.borde</pre>	rs
	Numeric vector with length of 2 for minimum and maximum log(light) levels to
	use. Alternatively character value 'auto', that will allow FLightR to assign these
	values according to detected tag type.

log.irrad.bord	ers
	Numeric vector with length of 2 for minimum and maximum log(irradiance) values to use. Alternatively character value 'auto', that will allow FLightR to assign these values according to detected tag type.
saves	character values informing FLightR if min or max values were used by logger.
measurement.pe	riod
	Value in seconds defining how often tag was measuring light levels. If NULL value will be taken from known values for detected tag type.
<pre>impute.on.boun</pre>	daries
	logical, if FLightR should approximate values at boundaries. Set it to TRUE only if you have vary few active points at each twilight, e.g if tag was saving every 10 minutes or so.

Details

The returned object has many parts, the important are: (1) the recorded light data, (2) the detected twilight events, (3) light level data at the moment of each determined sunrise and sunset and around them (24 fixes before and 24 after), and (4) technical parameters of the tag, i. e. its type, saving and measuring period (the periodicity, in seconds, at which a tag measures and saves data).

Value

list, which is to be further processed with the FLightR.

Examples

```
File<-system.file("extdata", "Godwit_TAGS_format.csv", package = "FLightR")
Proc.data<-get.tags.data(File)</pre>
```

get_ZI_distances Estimate distances moved between twilights

Description

This function estimate distances with all zeros from stationary periods. This means many of the resulting movements will have 0 as the distance

Usage

get_ZI_distances(Result)

Arguments

Result An object created by run.particle.filter.

Value

a data frame containing median and quartiles for the distances and also departure and arrival time

make.calibration

Author(s)

Eldar Rakhimberdiev

make.calibration

Creates a calibration object, further used for calculation of coordinates in the run.particle.filter.

Description

Function estimates all necessary parameters from the calibration data logged in a known location or locations.

Usage

```
make.calibration(
   Proc.data,
   Calibration.periods,
   model.ageing = FALSE,
   plot.each = FALSE,
   plot.final = FALSE,
   likelihood.correction = "auto",
   fixed.logSlope = c(NA, NA),
   suggest.irrad.borders = FALSE,
   return.slopes = FALSE
)
```

Proc.data	processed data object generated by get.tags.data
Calibration.per	iods
	a data frame containing start and end dates of all the calibration periods (POSIXct) and geographic coordinates of the corresponding calibration locations.
model.ageing	if set to TRUE, accounts for the tag ageing (with opacification of its transparent shell of a light sensor), resulting into decreasing sensitivity of the device. This option is useful only if there were several calibration periods or if calibration period was very long (~ longer than a month).
plot.each	Do you want every twilight to be plotted while processing
plot.final	Do you want final calibration graph to be plotted. On the graph you can see all the observed versus expected light levels. All slopes should be similar.
likelihood.corr	ection
	will estimate correction of likelihood for the current calibration parameters.
	Highly recommended not to be change from 'auto'. In this case FLightR will switch it to FALSE in case tag saved data on 10 minutes or longer period.

fixed.logSlope	these are mean (1) and SD (2) for distribution of slopes. Should normally be
	estimated from the data (and thus default is c(NA, NA)). Change any of these
	two finite values if you want them to be predetermined and not estimated from
	the calibration data.
<pre>suggest.irrad.b</pre>	orders
	experimental parameter! If set to TRUE function will try to find the best values for the log.irrad.borders
return.slopes	if true function will return estimated individual twilight slopes.

Value

calibration object to be uses in the make.prerun.object

Author(s)

Eldar Rakhimberdiev

Examples

make.grid makes spatial grid

Description

This function makes a rectangular grid with use defined boundaries and probabilities of being stationary.

Usage

```
make.grid(
    left = -180,
    bottom = -90,
    right = 180,
```

make.grid

```
top = 90,
distance.from.land.allowed.to.use = c(-Inf, Inf),
distance.from.land.allowed.to.stay = c(-Inf, Inf),
plot = TRUE,
return.distances = FALSE,
probability.of.staying = 0.5
)
```

Arguments

left	- left boundary in degrees (-180 <= left <= 180)	
bottom	- lower boundary in degrees (-90 <= bottom <= 90)	
right	- right boundary in degrees (-180 <= right <= 180)	
top	- top boundary in degrees (-90 <= right <= 90)	
distance.from.	land.allowed.to.use	
	- define how far from the shore animal could occur. Unit - km, negative values are for inland and positive for offshore directions. Inf stays for infinity	
distance.from.land.allowed.to.stay		
	- define how far from the shore animal could stay stationary between twilights.	
	Unit - km, negative values are for inland and positive for offshore directions.	
	Inf stays for infinity	
plot	show a plot of final grid.	
return.distances		
	- return distances to the shoreline	
probability.of.staying		
	- assigned probability value for grid cells that do not satisfy distance.from.water.allowed.to.stay	

Value

dataframe with coordinates(lon and lat) and probability.of.staying

Author(s)

Eldar Rakhimberdiev

Examples

```
Grid<-make.grid(left=-14, bottom=30, right=13, top=57,
distance.from.land.allowed.to.use=c(-Inf, Inf),
distance.from.land.allowed.to.stay=c(-Inf, Inf))
```

make.prerun.object combines data, calibration and sets up priors

Description

This function is one step before run.particle.filter. It combines data, calibration, spatial extent and movement priors and estimates spatial likelihoods that used later in the particle filter.

Usage

```
make.prerun.object(
    Proc.data,
    Grid,
    start,
    end = start,
    Calibration,
    threads = -1,
    Decision = 0.05,
    Direction = 0,
    Kappa = 0,
    M.mean = 300,
    M.sd = 500,
    likelihood.correction = TRUE
)
```

Proc.data	Processed data object created by get.tags.data.
Grid	Spatial grid created by make.grid.
start	release location (lat, lon).
end	end of the track location. Will use start by default. Use NA in case of unknown end point.
Calibration	Calibration object created by make.calibration.
threads	number of parallel threads to use. default is -1, which means FLightR will use all available threads except 1. Value 1 will force sequential evaluation
Decision	prior for migration probability values from 0 to 1 are allowed
Direction	Direction prior for direction of migration (in degrees) with 0 pointing to the North
Карра	concentration parameter for vonMises distribution, 0 means uniform or even distribution. Will set some prior for direction for all the track, so is not recommended to be changed
M.mean	Prior for mean distance travelled between consecutive twilights, km
M.sd	Prior for sd of distance travelled between consecutive twilights, the higher the value is the wider is the distribution
likelihood.correction	
	Should likelihood correction estimated during make.calibration run be used?

Value

Object to be uses in the run.particle.filter

Author(s)

Eldar Rakhimberdiev

Examples

```
File<-system.file("extdata", "Godwit_TAGS_format.csv", package = "FLightR")</pre>
# to run example fast we will cut the real data file by 2013 Aug 20
Proc.data<-get.tags.data(File, end.date=as.POSIXct('2013-07-02', tz='GMT'))</pre>
Calibration.periods<-data.frame(
       calibration.start=NA,
       calibration.stop=as.POSIXct("2013-08-20", tz='GMT'),
       lon=5.43, lat=52.93)
    #use c() also for the geographic coordinates, if you have more than one calibration location
       # (e. g., lon=c(5.43, 6.00), lat=c(52.93,52.94))
print(Calibration.periods)
# NB Below likelihood.correction is set to FALSE for fast run!
# Leave it as default TRUE for real examples
Calibration<-make.calibration(Proc.data, Calibration.periods, likelihood.correction=FALSE)
Grid<-make.grid(left=0, bottom=50, right=10, top=56,
  distance.from.land.allowed.to.use=c(-Inf, Inf),
  distance.from.land.allowed.to.stay=c(-Inf, Inf))
all.in<-make.prerun.object(Proc.data, Grid, start=c(5.43, 52.93),
                             Calibration=Calibration, threads=2)
```

map.FLightR.ggmap plots result over map

Description

plots track over map with probability cloud. Can plot only part of the track if dates are specified. Note that you can use it only after obtaining and registering in you current session Google Api Key. For details on the API key check [here](http://ornithologyexchange.org/forums/topic/38315-mapflightrggmap-error).

Usage

```
map.FLightR.ggmap(
    Result,
    dates = NULL,
    plot.cloud = TRUE,
    map.options = NULL,
```

```
plot.options = NULL,
save.options = NULL,
zoom = "auto",
return.ggobj = FALSE,
seasonal.colors = TRUE,
seasonal.donut.location = "topleft",
seasonal.donut.proportion = 0.5,
save = TRUE
)
```

Arguments

Result	FLightR result object obtained from run.particle.filter	
dates	either NULL if all twilights should be included or data.frame with first column - start of the period and second end of the period. Each line represents a new period	
plot.cloud	Should probability cloud be plotted? If TRUE cloud is estimated by stat_density2d	
map.options	options passed to get_map, note that zoom option is defined separately	
plot.options	plotting options. Not defined yet!	
save.options	options passed to ggsave. Filename should be defined here.	
zoom	Zoom for map. If 'auto' FLightR will try to find optimal zoom level by down- loading different size maps and checking whether all the points fit the map.	
return.ggobj	Should ggobj be returned for subsequent checks and/or replotting	
seasonal.colors		
	if true points of the track will have seasonal colors	
seasonal.donut.location		
	if NULL - no color wheel placed, otherwise select one of 'bottomleft', 'bottom- right', 'topleft'	
seasonal.donut.proportion		
	how much of X axis should color wheel occupy. return either NULL or ggplot2 class object	
save	should function save results with ggsave?	

Value

if 'return.ggobj=TRUE' return ggplot object otherwise returns 'NULL'.

Author(s)

Eldar Rakhimberdiev

Examples

```
File<-system.file("extdata", "Godwit_TAGS_format.csv", package = "FLightR")
# to run example fast we will cut the real data file by 2013 Aug 20
Proc.data<-get.tags.data(File, end.date=as.POSIXct('2013-06-25', tz='GMT'))
Calibration.periods<-data.frame(</pre>
```

14

```
calibration.start=as.POSIXct(c(NA, "2014-05-05"), tz='GMT'),
       calibration.stop=as.POSIXct(c("2013-08-20", NA), tz='GMT'),
       lon=5.43, lat=52.93)
    #use c() also for the geographic coordinates, if you have more than one calibration location
       # (e. g., lon=c(5.43, 6.00), lat=c(52.93,52.94))
# NB Below likelihood.correction is set to FALSE for fast run!
# Leave it as default TRUE for real examples
Calibration<-make.calibration(Proc.data, Calibration.periods, likelihood.correction=FALSE)
Grid<-make.grid(left=0, bottom=50, right=10, top=56,
  distance.from.land.allowed.to.use=c(-Inf, Inf),
  distance.from.land.allowed.to.stay=c(-Inf, Inf))
all.in<-make.prerun.object(Proc.data, Grid, start=c(5.43, 52.93),
                             Calibration=Calibration, threads=2)
# here we will run only 1e4 partilces for a very short track.
# One should use 1e6 particles for the full run
Result<-run.particle.filter(all.in, threads=1,</pre>
           nParticles=1e3, known.last=TRUE,
           precision.sd=25, check.outliers=FALSE)
## Not run:
map.FLightR.ggmap(Result, seasonal.donut.location=NULL, zoom=6, save=FALSE)
## End(Not run)
# for this short track without variance seasonal donut does not work,
# but for normall track it will.
```

plot_likelihood plot likelihood surface over map

Description

plots specific likelihood surface over map

Usage

```
plot_likelihood(object, date = NULL, twilight.index = NULL)
```

object	either output from make.prerun.object or run.particle.filter
date	either NULL or a date (possibly with time) closest to the twilight you wan to be plotted
twilight.index	number of likelihood surface to be plotted

Details

function plots likelihoods before particle filter run, so these are pure results of calibrations without any movement model

Value

'NULL'

Author(s)

Eldar Rakhimberdiev

Examples

```
File<-system.file("extdata", "Godwit_TAGS_format.csv", package = "FLightR")</pre>
# to run example fast we will cut the real data file by 2013 Aug 20
Proc.data<-get.tags.data(File, end.date=as.POSIXct('2013-07-02', tz='GMT'))</pre>
Calibration.periods<-data.frame(
       calibration.start=as.POSIXct(c(NA, "2014-05-05"), tz='GMT'),
       calibration.stop=as.POSIXct(c("2013-08-20", NA), tz='GMT'),
       lon=5.43, lat=52.93)
    #use c() also for the geographic coordinates, if you have more than one calibration location
       # (e. g., lon=c(5.43, 6.00), lat=c(52.93,52.94))
# NB Below likelihood.correction is set to FALSE for fast run!
# Leave it as default TRUE for real examples
Calibration<-make.calibration(Proc.data, Calibration.periods, likelihood.correction=FALSE)
Grid<-make.grid(left=0, bottom=50, right=10, top=56,
 distance.from.land.allowed.to.use=c(-Inf, Inf),
 distance.from.land.allowed.to.stay=c(-Inf, Inf))
all.in<-make.prerun.object(Proc.data, Grid, start=c(5.43, 52.93),
                             Calibration=Calibration, threads=2)
plot_likelihood(all.in, twilight.index=10)
```

plot_lon_lat plots result by longitude and latitude

Description

This function plots result by latitude and longitude in either vertical or horizontal layout.

Usage

```
plot_lon_lat(Result, scheme = c("vertical", "horizontal"))
```

Arguments

Result	FLightR result object obtained from run.particle.filter
scheme	either 'vertical' or 'horizontal' layouts

Value

'NULL'

Author(s)

Eldar Rakhimberdiev

Examples

```
File<-system.file("extdata", "Godwit_TAGS_format.csv", package = "FLightR")</pre>
# to run example fast we will cut the real data file by 2013 Aug 20
Proc.data<-get.tags.data(File, end.date=as.POSIXct('2013-07-02', tz='GMT'))</pre>
Calibration.periods<-data.frame(
       calibration.start=as.POSIXct(c(NA, "2014-05-05"), tz='GMT'),
       calibration.stop=as.POSIXct(c("2013-08-20", NA), tz='GMT'),
       lon=5.43, lat=52.93)
    #use c() also for the geographic coordinates, if you have more than one calibration location
       # (e. g., lon=c(5.43, 6.00), lat=c(52.93,52.94))
# NB Below likelihood.correction is set to FALSE for fast run!
# Leave it as default TRUE for real examples
Calibration<-make.calibration(Proc.data, Calibration.periods, likelihood.correction=FALSE)
Grid<-make.grid(left=0, bottom=50, right=10, top=56,
 distance.from.land.allowed.to.use=c(-Inf, Inf),
 distance.from.land.allowed.to.stay=c(-Inf, Inf))
all.in<-make.prerun.object(Proc.data, Grid, start=c(5.43, 52.93),
                             Calibration=Calibration, threads=2)
# here we will run only 1e4 partilces for a very short track.
# One should use 1e6 particles for the full run
Result<-run.particle.filter(all.in, threads=1,</pre>
           nParticles=1e3, known.last=TRUE,
           precision.sd=25, check.outliers=FALSE)
plot_lon_lat(Result)
```

plot_slopes_by_location

plots log of observed versus expected slope by time for a known location

Description

The function calculates and plots calibration slopes for sunsets and sunrises for every day of the tracking period, based on the assumption that the tag remained in the same (calibration) location all the time.

Usage

```
plot_slopes_by_location(
    Proc.data,
    location,
    log.light.borders = "auto",
    log.irrad.borders = "auto",
    ylim = NULL,
    xlim = NULL
)
```

Arguments

Proc.data	processed data object generated by get.tags.data
location	vector with longitude and latitude of calibration location (degrees).
log.light.bor	ders
	numeric vector with length of 2 for minimum and maximum log(light) levels to use. Default value 'auto', will take these values from the Proc.data object.
log.irrad.bor	ders
	numeric vector with length of 2 for minimum and maximum log(irradiance) values to use. Default value 'auto', will take these values from the Proc.data object.
ylim	the y limits of the plot. The default value, NULL, indicates that the range of the finite values to be plotted should be used.
xlim	the x limits of the plot. The default value, NULL, otherwise can be POSIXct or character in a form readable by as.POSIXct.

Details

The plot of calibration slopes is used for finding start and end dates of a calibration period (the time period, during which the tag remained in the calibration location with coordinates (x,y)). During the calibration period, the calibration slopes vary little both, between the twilight events (sunrises and sunsets) and in time. When the tag changes location, the slopes for sunrises and sunsets start to deviate. There may potentially be several calibration periods for the same location (if the bird returned to the same location several times). The boundaries (start and end dates) of each of these periods are captured visually. If there were more than one calibration location, the procedure is repeated, once for each location. All the obtained calibration periods can be entered in a data frame 'Calibration.periods', for further analysis. Each line of the data frame contains start and end dates (if applicable) of the calibration period and geographic coordinates of the location.

Value

'NULL'

plot_util_distr

Author(s)

Eldar Rakhimberdiev

Examples

```
File<-system.file("extdata", "Godwit_TAGS_format.csv", package = "FLightR")
Proc.data<-get.tags.data(File)
plot_slopes_by_location(Proc.data=Proc.data, location=c(5.43, 52.93))
abline(v=as.POSIXct("2013-08-20", tz='GMT')) # end of first calibration period
abline(v=as.POSIXct("2014-05-05", tz='GMT')) # start of the second calibration period</pre>
```

plot_util_distr	plots resulting track over map with uncertainty shown by space utili-
	sation distribution

Description

May be use not only for the whole track but for a set of specific dates, e.g. to show spatial uncertainty during migration. Note that you can use it only after obtaining and registering in you current session Google Api Key. For details on the API key check [here](http://ornithologyexchange.org/forums/topic/38315-mapflightrggmap-error).

Usage

```
plot_util_distr(
    Result,
    dates = NULL,
    map.options = NULL,
    percentiles = c(0.4, 0.6, 0.8),
    zoom = "auto",
    geom_polygon.options = NULL,
    save.options = NULL,
    color.palette = NULL,
    use.palette = TRUE,
    background = NULL,
    plot = TRUE,
    save = TRUE
)
```

)

Result	FLightR result object obtained from run.particle.filter
dates	Use NULL if all twilights will be used for plotting, one integer if specific twi- light should be plotted (line number in Result\$Results\$Quantiles). Use data.frame with first column - start of the period and second - end of the period and each line represents a new period to plot specific periods, e.g. wintering or migration.

map.options	options passed to get_map, note that zoom option is defined separately
percentiles	Probability breaks for utilisation distribution
zoom	Zoom for map. If 'auto' FLightR will try to find optimal zoom level by down- loading different size maps and checking whether all the points fit the map.
geom_polygon.op	otions
	options passed to geom_polygon
save.options	options passed to ggsave. Filename should be defined here.
color.palette	colors for probability contours. Either NULL or colorRampPalette object
use.palette	should the same colors be used for polygon boundaries as for polygon filling?
background	if provided will be used as a background. Must be created by link[ggmap]{get_map}
plot	should function produce a plot?
save	should function save results with ggsave?

Value

list with two parts

res_buffers	spatial buffers for defined probability values
р	ggplot object

Author(s)

Eldar Rakhimberdiev

Examples

```
File<-system.file("extdata", "Godwit_TAGS_format.csv", package = "FLightR")</pre>
# to run example fast we will cut the real data file by 2013 Aug 20
Proc.data<-get.tags.data(File, end.date=as.POSIXct('2013-06-25', tz='GMT'))</pre>
Calibration.periods<-data.frame(
       calibration.start=as.POSIXct(c(NA, "2014-05-05"), tz='GMT'),
       calibration.stop=as.POSIXct(c("2013-08-20", NA), tz='GMT'),
       lon=5.43, lat=52.93)
    #use c() also for the geographic coordinates, if you have more than one calibration location
       # (e. g., lon=c(5.43, 6.00), lat=c(52.93,52.94))
# NB Below likelihood.correction is set to FALSE for fast run!
# Leave it as default TRUE for real examples
Calibration<-make.calibration(Proc.data, Calibration.periods, likelihood.correction=FALSE)
Grid<-make.grid(left=0, bottom=50, right=10, top=56,
  distance.from.land.allowed.to.use=c(-Inf, Inf),
  distance.from.land.allowed.to.stay=c(-Inf, Inf))
all.in<-make.prerun.object(Proc.data, Grid, start=c(5.43, 52.93),
                             Calibration=Calibration, threads=1)
# here we will run only 1e4 partilces for a very short track.
# One should use 1e6 particles for the full run
```

run.particle.filter

run.particle.filter Run Particle Filter

Description

Main function of FLightR, it takes fully prepared object created by make.prerun.object and produces a result object that can be used for plotting etc.

Usage

```
run.particle.filter(
 all.out,
 cpus = NULL,
  threads = -1,
  nParticles = 1e+06,
 known.last = TRUE,
 precision.sd = 25,
 behav.mask.low.value = 0,
  k = NA,
 plot = TRUE,
 cluster.type = "PSOCK",
 a = 45,
 b = 1500,
 L = 90,
  adaptive.resampling = 0.99,
  check.outliers = FALSE,
  sink2file = FALSE,
 add.jitter = FALSE
)
```

all.out	An object created by make.prerun.object.
cpus	another way to specify threads
threads	An amount of threads to use while running in parallel. default is -1. if value 1 submitted package will run sequentially

nParticles	total amount of particles to be used with the run. 10 000 (1e4) is recommended for the preliminary run and 1 000 000 (1e6) for the final
known.last	Set to FALSE if your bird was not at a known place during last twilight in the data
precision.sd	if known.last then what is the precision of this information. Will be used to resample particles proportionally to their distance from the known last point with probability $P = dnorm(0, precision.sd)$
behav.mask.low	.value
	Probability value that will be used instead of 0 in the behavioural mask. If set to 1 behavioural mask will not be active anymore
k	Kappa parameter from vonMises distribution. Default is NA, otherwise will generate particles in a direction of a previous transitions with kappa = k
plot	Should function plot preliminary map in the end of the run?
cluster.type	see help to package parallel for details
а	minimum distance that is used in the movement model - left boundary for trun- cated normal distribution of distances moved between twilights. Default is 45 for as default grid has a minimum distance of 50 km.
b	Maximum distance allowed to fly between two consecutive twilights
L	how many consecutive particles to resample
adaptive.resam	pling
	Above what level of ESS resampling should be skipped
check.outliers	switches ON the online outlier routine
sink2file	will write run details in a file instead of showing on the screen
add.jitter	will add spatial jitter inside a grid cell for the median estimates

Value

FLightR object, containing output and extracted results. It is a list with the following elements

Indices	List with prior information and indices
Spatial	Spatial data - Grid, Mask, spatial likelihood
Calibration	all calibration parameters
Data	original data
Results	The main results object. Main components of it are
	Quantiles dataframe containing results on locations. Each line corresponds to a twilight
	Movement.results dataframe containing all the movement results, Note - time at line n means time of the end of transition between n and n-1
	outliers id of twilights excluded by online outlier detection tool
	LL -Log likelihood
	Points.rle run length encoding object with posterior distribution for every twi- light. Note that numbers of points correspond to line numbers in \$Spatial\$Grid
	Transitions.rle run length encoding object with all the transitions

Author(s)

Eldar Rakhimberdiev

Examples

```
File<-system.file("extdata", "Godwit_TAGS_format.csv", package = "FLightR")</pre>
# to run example fast we will cut the real data file by 2013 Aug 20
Proc.data<-get.tags.data(File, end.date=as.POSIXct('2013-07-02', tz='GMT'))</pre>
Calibration.periods<-data.frame(
       calibration.start=NA,
       calibration.stop=as.POSIXct("2013-08-20", tz='GMT'),
       lon=5.43, lat=52.93)
     #use c() also for the geographic coordinates, if you have more than one calibration location
       # (e. g., lon=c(5.43, 6.00), lat=c(52.93,52.94))
print(Calibration.periods)
# NB Below likelihood.correction is set to FALSE for fast run!
# Leave it as default TRUE for real examples
Calibration<-make.calibration(Proc.data, Calibration.periods, likelihood.correction=FALSE)
Grid<-make.grid(left=0, bottom=50, right=10, top=56,
  distance.from.land.allowed.to.use=c(-Inf, Inf),
  distance.from.land.allowed.to.stay=c(-Inf, Inf))
all.in<-make.prerun.object(Proc.data, Grid, start=c(5.43, 52.93),
                             Calibration=Calibration, threads=2)
# here we will run only 1e4 partilces for a very short track.
# One should use 1e6 particles for the full run.
Result<-run.particle.filter(all.in, threads=1,</pre>
           nParticles=1e3, known.last=TRUE,
           precision.sd=25, check.outliers=FALSE)
```

stationary.migration.summary

find potential stationary periods and estimates their location and movement schedule

Description

This function will find any sites where birds stayed longer than min.stay. Potential movement is detected by the minimum probability of movement prob.cutoff.

Usage

```
stationary.migration.summary(Result, prob.cutoff = 0.1, min.stay = 3)
```

Arguments

Result	FLightR result object obtained from run.particle.filter
prob.cutoff	Minimum probability that defines movement
min.stay	Minimum duration of stationary period (in twilights)

Value

list with stationary and movement statistics

Use lower cut offs for real runs!

Author(s)

Eldar Rakhimberdiev

Examples

```
File<-system.file("extdata", "Godwit_TAGS_format.csv", package = "FLightR")</pre>
# to run example fast we will cut the real data file by 2013 Aug 20
Proc.data<-get.tags.data(File, end.date=as.POSIXct('2013-06-25', tz='GMT'))</pre>
Calibration.periods<-data.frame(
       calibration.start=as.POSIXct(c(NA, "2014-05-05"), tz='GMT'),
       calibration.stop=as.POSIXct(c("2013-08-20", NA), tz='GMT'),
       lon=5.43, lat=52.93)
    #use c() also for the geographic coordinates, if you have more than one calibration location
       # (e. g., lon=c(5.43, 6.00), lat=c(52.93,52.94))
# NB Below likelihood.correction is set to FALSE for fast run!
# Leave it as default TRUE for real examples
Calibration<-make.calibration(Proc.data, Calibration.periods, likelihood.correction=FALSE)
Grid<-make.grid(left=0, bottom=50, right=10, top=56,
 distance.from.land.allowed.to.use=c(-Inf, Inf),
 distance.from.land.allowed.to.stay=c(-Inf, Inf))
all.in<-make.prerun.object(Proc.data, Grid, start=c(5.43, 52.93),
                             Calibration=Calibration, threads=1)
# here we will run only 1e4 partilces for a very short track.
# One should use 1e6 particles for the full run.
Result<-run.particle.filter(all.in, threads=1,</pre>
           nParticles=1e3, known.last=TRUE,
           precision.sd=25, check.outliers=FALSE)
Summary<-stationary.migration.summary(Result, prob.cutoff=1)</pre>
```

twGeos2TAGS

Description

this function converts combines twilights detected in twGeos with raw data and writes them down in TAGS format that can be easily read by get.tags.data

Usage

twGeos2TAGS(raw, twl, threshold, filename = NULL)

Arguments

raw	original data - dataframe with two columns first column must contain time and second measured light levels
twl	twilights object from preprocess.light function
threshold	threshold value used for twilight definition in preprocess.light
filename	if NULL data.frame in TAGS format will be returned otherwise .csv file in TAGS format will be written

Details

TAGS format returned or written as .csv by this function is a dataframe with columns

datetime date and time in ISO 8601 format e.g. 2013-06-16T00:00:11.000Z

light light value measured by tag

- twilight assigned by the software numeric indication of whether the record belongs to sunrise (1), sunset (2) or none of those (0)
- excluded indication of whether a twilight was excluded during manual inspection (logical, TRUE | FALSE)
- interp indication of whether the light value at twilight was interpolated (logical, TRUE | FALSE)

The fields excluded and interp may have values of TRUE only for twilight > 0.

Value

NULL if filename is provided or TAGS formatted dataframe.

Author(s)

Eldar Rakhimberdiev & Simeon Lisovski

See Also

BAStag2TAGS and GeoLight2TAGS

Index

as.POSIXct, 18 BAStag2TAGS, 2, 7, 25 colorRampPalette, 20 file, 7 find.stationary.location, 3 find.times.distribution,5 FLightR2Movebank, 5 GeoLight2TAGS, 3, 6, 25 geom_polygon, 20 get.tags.data, 2, 4, 6, 7, 9, 12, 18, 25 get_map, *14*, *20* get_ZI_distances, 8ggplot, 20 ggsave, 14, 20 make.calibration, 9, 12 make.grid, 10, 12 make.prerun.object, 10, 12, 15, 21 map.FLightR.ggmap, 13 optim, 4 plot_likelihood, 15 plot_lon_lat, 16 plot_slopes_by_location, 17 plot_util_distr, 19 POSIXct, 7 run.particle.filter, 5, 8, 9, 12-15, 17, 19, 21, 24 stat_density2d, 14 stationary.migration.summary, 23 twGeos2TAGS, 3, 7, 25 url,7