Package ‘Epi’

July 8, 2025

Version 2.60

Date 2025-06-30

Title Statistical Analysis in Epidemiology

Depends R (>=3.5.0), utils

Imports cmprsk, etm, splines, MASS, survival, plyr, dplyr, Matrix,
numDeriv, data.table, zoo, mgcv, magrittr

Suggests mstate, nlme, Ime4, demography, popEpi, tidyr

Description Functions for demographic and epidemiological analysis in
the Lexis diagram, i.e. register and cohort follow-up data. In
particular representation, manipulation, rate estimation and
simulation for multistate data - the Lexis suite of functions, which
includes interfaces to 'mstate’, 'etm' and 'cmprsk' packages.
Contains functions for Age-Period-Cohort and Lee-Carter modeling and
a function for interval censored data and some useful functions for
tabulation and plotting, as well as a number of epidemiological data
sets.

License GPL-2

URL http://bendixcarstensen.com/Epi/
NeedsCompilation yes

Author Bendix Carstensen [aut, cre],
Martyn Plummer [aut],
Esa Laara [ctb],
Michael Hills [ctb]

Maintainer Bendix Carstensen <b@bxc.dk>
Repository CRAN
Date/Publication 2025-07-08 12:00:07 UTC

Contents

http://bendixcarstensen.com/Epi/

Contents

addDrug e e 8
apc.fit . . e e 11
apeframe 15
apc.LCa e 18
apc.lineso e e 19
B.dk . . e 22
bdendo e 23
births e e e e e e 24
blcalT e 25
bootLexis 25
boxes.MS e 27
BrCa e e e e 33
bV . e e e e 34
calLlyr ... 35
chind.Lexis e e e e e 37
COWCE & v v e e e e e e e e e e e e e e e e e s 38
Cl.Crisk e e 40
CLCUM o e e e e e e e e e e e e 42
CLELA . . . ot o e e e e e e e e e 45
cl.lin . . .o e e 46
cipd . .. e 52
clogiStic e e 54
COMILCUIM . . . v v v v e 55
errLexis e e e e 56
cutLexis e e e e e 58
detrend e e e e e 61
diet . . . e 62
DMcony e e e e 63
DMepi e e 64
DMlate e e e 66
effX e e 67
effx.xmatch e 69
entry.Lexis. e 70
Epi. . . e 72
erl . e e e e 72
EWIALES . . o v v v e 75
expand.data oL e 76
fitadd e e 77
fitbaseline e e 78
fitmult. e e 79
float e 80
foreign.Lexis 82
ftrend e e e e e e e 83
GEMLEXD + v v e 85
gmortDK . . . L L 89
harm e e e e 90
hivDK . . . e 91

Contents

3
ILSPAN . . . v o e e e e e e e e e e e e 94
LCafit e 96
legendbox 100
lep . . . e 102
Lexis . . . e 103
Lexis.diagram e 106
Lexislineso 109
Lexis2msm e e 110
Igrep . . . o o e e 111
Lifelines o 112
s . o e 113
lungDK . . . e 115
Mk . . . e 116
mat2pol . ..o 117
matshade 118
meutlexis L e 120
merge.Lexis 122
mh . .. e 123
mod.Lexis e 125
mortDK 129
Nk . o 130
N2Y . e 131
NArray 133
NCUL .« . v v v e e e e e e e e e e e e e e e e e e 134
MHCE . . v v o e e e e e e 135
nickel 136
NS 136
OCCUD + + v e e e e e e e e e e e e e e e 139
paths.Lexis e e 140
pelines ... oL 141
pctab . . . 142
PlOL.APC . . . e e e 143
plot.Lexis e e e 144
PlotCIF e 146
pPlotEst e 149
plotevento e e e e e e 151
POISTEZ .« . o o o e e e e e e 152
0 O 154
PIrOJECtION.IP o o o i e e e e e e e e e e e e 154
rateplot . ..o L e 155
reutLexis 159
Relevel e 160
TILEL & o ot e e e e e e e e e e e e e e 162
ROC . . . e 163
Satyph . . 165
SIMLEeXiS e e 166
SPtLexis e e e e 171

stack.Lexis e 173

4 Aal
stat.table 174
stattable.funs L. L 176
SIENOZ e e e e 177
subset.Lexis e 179
summary.Lexis 180
Termplot L e e e e 181
testisDK o 183
thoro L e e 184
timeBand 185
timeScales 186
transform.Lexis 187
tWODY2 . . e 189
unlexis 190
Ydk .o e 191

Index 193

AaJ The Aalen-Johansen estimator of state probabilities from a multistate
Lexis object.
Description
The Aalen-Johansen estimator is computed on the basis of a Lexis multistate object along a given
time scale. The function is a wrapper for the survfit.
Usage
S3 method for class 'Lexis'
AaJ(Lx,
formula = ~ 1,
timeScale = 1, ...)
Arguments
Lx A Lexis object. The starting state must be the first among levels(Lx).
formula A one-sided formula passed on to survfit.
timeScale Character or integer, selecting one of the timescales of the Lexis object.
Arguments passed on. Ignored.
Value
An object of class survfitms — see survfit.
Author(s)

Bendix Carstensen, http://bendixcarstensen.com

http://bendixcarstensen.com

addCov 5

See Also

survfit ci.Crisk

Examples

data(DMlate)
str(DMlate)
dml <- Lexis(entry = list(Per = dodm,
Age = dodm-dobth,
DMdur = 0),
exit = list(Per = dox),
exit.status = factor(!is.na(dodth),
labels = c("DM","Dead")),
data = DMlate)

Cut the follow-up at insulin start
dmi <- cutLexis(dml,
cut = dml$doins,
new.state = "Ins”,
split.state = TRUE)
summary (dmi)

ms <- AaJ.lLexis(dmi, timeScale = "DMdur")
class(ms)
ms$states
head(ms$pstate)
addCov Add covariates (typically clinical measurements) taken at known times

to a Lexis object.

Description

When follow-up in a multistate model is represented in a Lexis object we may want to add infor-
mation on covariates, for example clinical measurements, obtained at different times. This function
cuts the follow-up time (see cutLexis) at the times of measurement and carries the measurements
forward in time to the next measurement occasion.

Usage
S3 method for class 'Lexis'
addCov(Lx,
clin,
timescale = 1,
exnam,

tfc = "tfc", ...)

Arguments

Lx

clin

timescale

exnam

tfc

Value

addCov

A Lexis object with follow-up of a cohort.

A data frame with covariates to add (typically clinical measurements). Must
contain a variable lex. id identifying the persons represented in Lx, as well as
a variable with the same name as one of the timeScales in Lx, identifying the
time at which covariates are measured.

The times must be unique within each person; if not records with duplicate times
are discarded, and a warning issued. This is done using duplicated, so not very
well-defined, it is advisable that you do this yourself.

Numerical or character. Number or name of a timescale in Lx. The clin data
frame must have a variable of this name indicating the time at which the covari-
ate measurements were taken.

Character. Name of the variable in clin with the examination names (such as
wavel, wave2 etc.). Values may not be repeated within person and cannot be
equal to any of levels(Lx). Will be carried over to the resulting Lexis object.
If there is no such variable in clin it will be constructed; if the argument is
omitted, a variable called exnam with values ex1, ex2 etc. will be constructed.

Character (time from last clinical visit). Name of the variable in the result
which will contain the time since the most recent covariate date. It will be
included among the timescales of the resulting Lexis object.

If the argument is omitted a variable called tfc will be constructed.

Arguments passed on. Ignored.

A Lexis object representing the same follow-up as Lx, with cuts added at the times of examination,
and covariate measurements added for all records representing follow-up after the most recent time

of measurement.

Also tfcis added as a time scale, it is however not a proper timescale since it is reset at every clinical
examination. Therefor the value of the timeSince attribute is set to "X" in order to distinguish it
from other proper time scales that either have an empty string or the name of a state.

Author(s)

Bendix Carstensen, <b@bxc.dk>, http://bendixcarstensen.com

See Also

cutLexis, mcutlLexis, splitlexis, Lexis

Examples

A small bogus cohort
xcoh <- structure(list(id = c("A", "B", "C"),

birth = c("1952-07-14", "1954-04-01", "1987-06-10"),
entry = c("1965-08-04", "1972-09-08", "1991-12-23"),
exit = c("1997-06-27", "1995-05-23", "1998-07-24"),

http://bendixcarstensen.com

addCov

fail = c(1, o, 1)),
.Names = c("id", "birth", "entry”, "exit", "fail"),
row.names = c("1”, "2", "3"),
class = "data.frame"”)

Convert the character dates into numerical variables (fractional years)
xcoh$bt <- cal.yr(xcoh$birth)
xcoh$en <- cal.yr(xcoh$entry)
xcoh$ex <- cal.yr(xcoh$exit)

Define as Lexis object with timescales calendar time and age
Lcoh <- Lexis(entry = list(per=en),
exit = list(per=ex, age=ex-bt),
exit.status = factor(fail, @:1, c("Alive"”,"Dead")),
data = xcoh)

str(Lcoh)
Lx <- Lcoh[,1:7]

Data frame with clinical examination data, date of examination in per
clin <- data.frame(lex.id = c(1,1,3,2),
per = cal.yr(c("1977-4-7",

"1971-7-1",
"1996-2-15",
"1990-7-3")),
bp = ¢c(120,140,160,157),
chol = ¢(5,7,8,9),
xnam = c("X2","X1","X1","X2"))
Lx
clin
str(Lx)
str(clin)

Different behavours when using exnam explicitly
addCov.Lexis(Lx, clin[,-5])
addCov.Lexis(Lx, clin, exnam="xnam")

Works with time split BEFORE
Lb <- addCov.Lexis(splitLexis(Lx,
time.scale="age",
breaks=seq(0,890,5)),
clin,
exnam="clX")
Lb
and also AFTER
La <- splitlLexis(addCov.Lexis(Lx,
clin,
exnam = "xnam"),
breaks=seq(0,890,5),
time.scale="age")
La
Lastfc == Lb$tfc
Lasage == Lb$age
str(La)

8 addDrug

str(Lb)
addDrug Expand a Lexis object with information of drug exposure based on
purchase dates and -amounts
Description

A Lexis object will contain information on follow-up for a cohort of persons through time, each
record containing information of one time interval, including the time at the beginning of each
interval. If information on drug purchase is known for the persons via lex.id in a list of data
frames, addDrug.Lexis will expand the Lexis object by cutting at all drug purchase dates, and
compute the exposure status for any number of drugs, and add these as variables.

In some circumstances the result is a Lexis object with a very large number of very small follow-up
intervals. The function coarse.Lexis combines consecutive follow-up intervals using the covari-
ates from the first of the intervals.

Usage

S3 method for class 'Lexis'

addDrug(Lx, # Lexis object
pdat, # list of data frames with drug purchase information

amt = # name of the variable with purchased amount

dpt = "dpt"”, # name of the variable with amount consumed per time

apt = NULL, # old name for dpt
#
#

n n

amt”,

method = "ext"”, method use to compute exposure
maxt = NULL, max duration for a purchase when using "fix”
grace = 0, # grace period to be added
tnam = setdiff(names(pdat[[1]]), c("lex.id", amt))[1],
name of the time variable from Lx
prefix = TRUE, # should drug names prefix variable names

sepfix = ".", # what should the separator be when forming prefix/suffix
verbose = TRUE,
)
coarse.Lexis(Lx, lim, keep = FALSE)
Arguments
Lx A Lexis object.
pdat Named list of data frames with drug purchase data.
amt Name of the variable in the data frames in pdat with the purchased amount.
dpt Name of the variable in the data frames in pdat with the consumed dose per
time. Must be given in units of units of amt per units of lex.dur in Lx.

apt Name previously used for dpt. Will disappear in next version.

method Character. One of "ext" (default), "dos" or "fix", for a description, see details.

addDrug 9

maxt Numerical. Maximal duration for a purchase when using method="fix", same
units as lex.dur.

grace Numeric. Grace period to be added after last time of computed drug coverage
to define end of exposure, same units as lex.dur.

tnam Character. Name of the timescale used in the data frames in pdat.

prefix Logical. Should the names of pdat be used as prefix for the 4 generated expo-
sure variables for each drug. If false the names of pdat will be used as suffix.

sepfix Character, used to separate the prefix and the name of the generated type of
variable.

verbose Logical. Should the function tell you about the choices you made?

lim Numeric vector of length 2. Consecutive follow-up intervals are combined if

the first has lex.dur < 1im[1], and the sum of lex.dur in the two intervals is
smaller than 1im[2]. If a scalar i given, c(1im, 3*1im) is used.

keep Logical of length 1 or nrow(Lx) that points to records that cannot be combined
with preceding records.

Arguments passed on. Ignored.

Details

This function internally uses addCov.Lexis to attach exposure status for several drugs (dispensed
medicine) to follow-up in a Lexis object. Once that is done, the exposure measures are calculated
at each time.

There is one input data frame per type of drug, each with variables lex. id, amt, a timescale variable
and possibly a variable dpt.

Three different methods for computing drug exposures from dates and amounts of purchases are
supported via the argument method.

n

» "ext": Extrapolation: the first drug purchase is assumed consumed over the interval to the
second purchase. Exposure for subsequent purchases are assumed to last as long as it would
have if consumed at a speed corresponding to the previous purchase being consumed over the
time span between the previous and current purchase, plus a period of length grace.

* "dos": Dosage: assumes that each purchase lasts amt/dpt plus grace.

* "fix": Fixed time: assumes that each purchase lasts maxt.

So for each purchase we have defined an end of coverage (expiry date). If next purchase is before
this, we assume that the amount purchased is consumed over the period between the two purchases,
otherwise over the period to the end of coverage. So the only difference between the methods is the
determination of the coverage for each purchase.

Based on this, for each date in the resulting Lexis four exposure variables are computed, see next
section.

10 addDrug

Value

A Lexis object with the same risk time, states and events as Lx. The follow-up for each person
has been cut at the purchase times of each of the drugs, as well as at the expiry times for each
drug coverage. Further, for each drug (i.e. the data frame in the pdat list) the name of the pdat
component determines the prefix for the 4 variables that will be added. Supposing this is AA for a
given drug, then 4 new variables will be:

* AA.ex: logical; is the person exposed in this interval
* AA.tf: numeric: time since first purchase, same units as lex.dur
* AA.ct: numeric: cumulative time on the drug, same units as lex.dur

* AA.cd: numeric: cumulative dose of the drug, same units as amt

So if pdat is a list of length 3 with names c("a","b","c") the function will add variables a.ex,
a.tf, a.ct, a.cd, b.ex, b.tf, b.ct, b.cd, c.ex, c.tf, c.ct, c.cd

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also

gen.exp, addCov.Lexis, cutLexis, rcutlLexis, mcutlLexis

Examples

Follow-up of 2 persons
clear()
fu <- data.frame(doe = c(2006, 2008),
dox = c(2015, 2018),
dob = c(1950, 1951),
xst = factor(c("A","D")))
Lx <- Lexis(entry = list(per = doe,
age = doe- dob),
exit = list(per = dox),
exit.status = xst,
data = fu)
Lx <- subset(Lx, select = -c(doe, dob, dox, xst))

split FU in 1 year intervals
Sx <- splitLexis(Lx, "per", breaks = seq(1990, 2020, 1.0))

drug purchases, one data frame for each drug
ra <- data.frame(per = c(2007 + runif(12,0,10)),
amt = sample(2:4, 12, r = TRUE),
lex.id = sample(1:2, 12, r = TRUE))
ra <- ralorder(ra$lex.id, ra$per),]

rb <- data.frame(per = c(2009 + runif(10, @, 10)),
amt = sample(round(2:4/3,1), 10, r = TRUE),
lex.id = sample(1:2, 10, r = TRUE))
rb <- rblorder(rb$lex.id, rb$per),]

http://bendixcarstensen.com

apc.fit 11

put in a named list
pdat <- list(A = ra, B = rb)
pdat

ex1 <- addDrug.Lexis(Sx, pdat, method = "ext") # default
summary (ex1)

collapsing some of the smaller intervals with the next
summary(coarse.Lexis(ex1, c(0.2,0.5)))

ex2 <- addDrug.Lexis(Sx, pdat, method = "ext", grace = 0.2)
dos <- addDrug.Lexis(Sx, pdat, method = "dos"”, dpt = 6)
fix <- addDrug.Lexis(Sx, pdat, method = "fix", maxt = 1)

apc.fit Fit an Age-Period-Cohort model to tabular data.

Description

Fits the classical five models to tabulated rate data (cases, person-years) classified by two of age,
period, cohort: Age, Age-drift, Age-Period, Age-Cohort and Age-Period-Cohort. There are no
assumptions about the age, period or cohort classes being of the same length, or that tabulation
should be only by two of the variables. Only requires that mean age and period for each tabulation
unit is given.

Usage

apc.fit(data,

ref.c,

ref.p,
dist = c("poisson”,"binomial”),

model = c("ns","bs","1s","factor"),

dr.extr = "Y",

parm = c("ACP","APC","AdCP","AdPC", "Ad-P-C","Ad-C-P","AC-P","AP-C"),
npar = c(A=5, P=5, C=5),

scale = 1,

alpha = 0.05,

print.AOV = TRUE)

Arguments

data Data frame with (at least) variables, A (age), P (period), D (cases, deaths) and Y
(person-years). Cohort (date of birth) is computed as P-A. If this argument is
given the arguments A, P, D and Y are ignored.

12

< O T >

ref.c

ref.p
dist

model

dr.extr

parm

apc.fit

Age; numerical vector with mean age at diagnosis for each unit.
Period; numerical vector with mean date of diagnosis for each unit.
Cases, deaths; numerical vector.

Person-years; numerical vector. Also used as denominator for binomial data,
see the dist argument.

Reference cohort, numerical. Defaults to median date of birth among cases. If
used with parm="AdCP" or parm="AdPC", the residual cohort effects will be 1 at
ref.c

Reference period, numerical. Defaults to median date of diagnosis among cases.

Distribution (or more precisely: Likelihood) used for modeling. if a binomial
model us used, Y is assumed to be the denominator; "binomial” gives a bi-
nomial model with logit link. The Age-effects returned are converted to the
probability scale, Period and Cohort effects are still odds-ratios.

Type of model (covariate effects) fitted:

* ns fits a model with natural splines for each of the terms, with npar param-
eters for the terms.

* bs fits a model with B-splines for each of the terms, with npar parameters
for the terms.

¢ 1s fits a model with linear splines.

» factor fits a factor model with one parameter per value of A, P and P-A.
npar is ignored in this case.

Character or numeric. How the drift parameter should be extracted from the
age-period-cohort model. Specifies the inner product used for definition of or-
thogonality of the period / cohort effects to the linear effects — in terms of a
diagonal matrix.

"Y" (default) uses the no. person-time, Y, corresponding to the observed infor-
mation about the square root of the rate.

"R" or "L" uses Y*Y/D corresponding to the observed information about the rate
(usually termed "lambda", hence the "L").

"D" or "T" uses the no. events as the weight in the inner product, corresponding
to the information about the log-rate (usually termed "theta", hence the "T").

If given "n" (naive) (well, in fact any other character value) will induce the use
of the standard inner product putting equal weight on all units in the dataset.

If dr.extr is a numeric vector this is used as the diagonal of the matrix inducing
the inner product.

If dr.extr is a numeric scalar, D + dr.extr#*Y is used as the diagonal of the
matrix inducing the inner product. This family of inner products are the only
ones that meet the split-observation invariance criterion.

The setting of this parameter has no effect on the fit of the model, it only in-
fluences the parametrization returned in the Age, Per and Coh elements of the
resulting list.

Character. Indicates the parametrization of the effects. The first four refer to the
ML-fit of the Age-Period-Cohort model, the last four give Age-effects from a
smaller model and residuals relative to this. If one of the latter is chosen, the
argument dr.extr is ignored. Possible values for parm are:

apc.fit

npar

alpha
scale

print.AQV

13

e "ACP": ML-estimates. Age-effects as rates for the reference cohort. Cohort
effects as RR relative to the reference cohort. Period effects constrained to
be 0 on average with O slope.

e "APC": ML-estimates. Age-effects as rates for the reference period. Period
effects as RR relative to the reference period. Cohort effects constrained to
be 0 on average with O slope.

e "AdCP": ML-estimates. Age-effects as rates for the reference cohort. Co-
hort and period effects constrained to be 0 on average with O slope. In this
case returned effects do not multiply to the fitted rates, the drift is missing
and needs to be included to produce the fitted values.

* "AdPC": ML-estimates. Age-effects as rates for the reference period. Co-
hort and period effects constrained to be 0 on average with 0 slope. In this
case returned effects do not multiply to the fitted rates, the drift is missing
and needs to be included to produce the fitted values.

* "Ad-C-P": Age effects are rates for the reference cohort in the Age-drift
model (cohort drift). Cohort effects are from the model with cohort alone,
using log(fitted values) from the Age-drift model as offset. Period effects
are from the model with period alone using log(fitted values) from the co-
hort model as offset.

e "Ad-P-C": Age effects are rates for the reference period in the Age-drift
model (period drift). Period effects are from the model with period alone,
using log(fitted values) from the Age-drift model as offset. Cohort effects
are from the model with cohort alone using log(fitted values) from the pe-
riod model as offset.

* "AC-P": Age effects are rates for the reference cohort in the Age-Cohort
model, cohort effects are RR relative to the reference cohort. Period effects
are from the model with period alone, using log(fitted values) from the Age-
Cohort model as offset.

* "AP-C": Age effects are rates for the reference period in the Age-Period
model, period effects are RR relative to the reference period. Cohort effects
are from the model with cohort alone, using log(fitted values) from the Age-
Period model as offset.

The number of parameters/knots to use for each of the terms in the model. If it
is vector of length 3, the numbers are taken as the no. of knots for Age, Period
and Cohort, respectively. Unless it has a names attribute with values "A", "P"
and "C" in which case these will be used. The knots chosen are the quantiles
(1:nk-0.5)/nk of the events (i.e. of rep(A,D) and similarly for P and C).

npar may also be a named list of three numerical vectors with names "A", "P"
and "C", in which case these taken as the knots for the age, period and cohort
effect, the smallest and largest element in each vector are used as the boundary
knots.

The significance level. Estimates are given with (1-alpha) confidence limits.
numeric(1), factor multiplied to the rate estimates before output.

Should the analysis of deviance table for the models be printed?

14 apc.fit

Details

Each record in the input data frame represents a subset of a Lexis diagram. The subsets need not
be of equal length on the age and period axes, in fact there are no restrictions on the shape of these;
they could be Lexis triangles for example. The requirement is that A and P are coded with the
mean age and calendar time of observation in the subset. This is essential since A and P are used as
quantitative variables in the models.

This approach is different from to the vast majority of the uses of APC-models in the literature
where a factor model is used for age, period and cohort effects. The latter can be obtained by using
model="factor"”. Note however that the cohort factor is defined from A and P, so that it is not
possible in this framework to replicate the Boyle-Robertson fallacy.

Value

An object of class "apc" (recognized by apc.plot and apc.lines) — a list with components:

Type Text describing the model and parametrization returned.
Model The model object(s) on which the parametrization is based.
Age Matrix with 4 columns: A.pt with the ages (equals unique (A)) and three columns

giving the estimated rates with c.i.s.

Per Matrix with 4 columns: P.pt with the dates of diagnosis (equals unique(P))
and three columns giving the estimated RRs with c.i.s.

Coh Matrix with 4 columns: C.pt with the dates of birth (equals unique(P-A)) and
three columns giving the estimated RRs with c.i.s.

Drift A 3 column matrix with drift-estimates and c.i.s: The first row is the ML-
estimate of the drift (as defined by drift), the second row is the estimate from
the Age-drift model. The first row name indicates which type of inner product
were used for projections. For the sequential parametrizations, only the latter is

given.

Ref Numerical vector of length 2 with reference period and cohort. If ref.p or ref.c
was not supplied the corresponding element is NA.

Anova Analysis of deviance table comparing the five classical models.

Knots If model is one of "ns"” or "bs”, a list with three components: Age, Per, Coh,
each one a vector of knots. The max and the min of the vectors are the boundary
knots.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

References

The considerations behind the parametrizations used in this function are given in detail in: B.
Carstensen: Age-Period-Cohort models for the Lexis diagram. Statistics in Medicine, 10; 26(15):3018-
45, 2007.

Various links to course material etc. is available through http://bendixcarstensen.com/APC/

http://bendixcarstensen.com
http://bendixcarstensen.com/APC/

apc.frame 15

See Also

apc.frame, apc.lines, apc.plot, LCa.fit, apc.LCa.

Examples

library(Epi)
data(lungDK)

Taylor a dataframe that meets the requirements for variable names
exd <- 1ungDKL,c("Ax","Px","D","Y")]
names(exd)[1:2] <- c("A","P")

Three different ways of parametrizing the APC-model, ML

ex.1 <- apc.fit(exd, npar=7, model="ns", dr.extr="1", parm="ACP", scale=10"5)
ex.D <- apc.fit(exd, npar=7, model="ns", dr.extr="D", parm="ACP", scale=10"5)
ex.Y <- apc.fit(exd, npar=7, model="ns", dr.extr="Y", parm="ACP", scale=10"5)

Sequential fit, first AC, then P given AC.
ex.S <- apc.fit(exd, npar=7, model="ns", parm="AC-P", scale=10"5)

Show the estimated drifts
ex.1[["Drift"]1]
ex.DL["Drift"1]
ex.Y[["Drift"]]
ex.SL["Drift"]1]

Plot the effects

1t <- c("solid","22")[c(1,1,2)]

apc.plot(ex.1, lty=c(1,1,3))

apc.lines(ex.D, col="red", lty=c(1,1,3))
apc.lines(ex.Y, col="limegreen", lty=c(1,1,3))
apc.lines(ex.S, col="blue", lty=c(1,1,3))

apc.frame Produce an empty frame for display of parameter-estimates from Age-
Period-Cohort-models.

Description

A plot is generated where both the age-scale and the cohort/period scale is on the x-axis. The left
vertical axis will be a logarithmic rate scale referring to age-effects and the right a logarithmic
rate-ratio scale of the same relative extent as the left referring to the cohort and period effects (rate
ratios).

Only an empty plot frame is generated. Curves or points must be added with points, lines or the
special utility function apc.lines.

16
Usage
apc.frame(a.
cp.
rr.
rr.
cp.
rr.
tic.
cp.
rr.
Arguments
a.lab
cp.lab
r.lab
rr.lab
rr.ref
a.tic
cp.tic
r.tic
rr.tic
tic.fac
a.txt
cp.txt
r.txt
rr.txt
ref.line
gap
col.grid
sides

r.

a.

r.

a.

r.

apc.frame

lab,
lab,
lab,
lab = r.lab / rr.ref,

ref = r.lab[length(r.lab)/2],

tic = a.lab,

tic = cp.lab,

tic = r.lab,

tic = r.tic / rr.ref,

fac = 1.3,

txt = "Age”,

txt = "Calendar time"”,

txt = "Rate per 100,000 person-years",
txt = "Rate ratio”,

ref.line = TRUE,

gap = diff(range(c(a.lab, a.tic)))/10,

col.grid = gray(0.85),
sides = ¢(1,2,4))

Numerical vector of labels for the age-axis.

Numerical vector of labels for the cohort-period axis.
Numerical vector of labels for the rate-axis (left vertical)
Numerical vector of labels for the RR-axis (right vertical)
At what level of the rate scale is the RR=1 to be.

Location of additional tick marks on the age-scale

Location of additional tick marks on the cohort-period-scale
Location of additional tick marks on the rate-scale

Location of additional tick marks on the RR-axis.

Factor with which to diminish intermediate tick marks

Text for the age-axis (left part of horizontal axis).

Text for the cohort/period axis (right part of horizontal axis).
Text for the rate axis (left vertical axis).

Text for the rate-ratio axis (right vertical axis)

Logical. Should a reference line at RR=1 be drawn at the calendar time part of
the plot?

Gap between the age-scale and the cohort-period scale
Colour of the grid put in the plot.

Numerical vector indicating on which sides axes should be drawn and annotated.
This option is aimed for multi-panel displays where axes only are put on the
outer plots.

apc.frame 17

Details

The function produces an empty plot frame for display of results from an age-period-cohort model,
with age-specific rates in the left side of the frame and cohort and period rate-ratio parameters in the
right side of the frame. There is a gap of gap between the age-axis and the calendar time axis, ver-
tical grid lines at c(a.lab,a.tic,cp.lab,cp.tic), and horizontal grid lines at c(r.lab,r.tic).

The function returns a numerical vector of length 2, with names c("cp.offset”,"RR.fac"). The
y-axis for the plot will be a rate scale for the age-effects, and the x-axis will be the age-scale. The
cohort and period effects are plotted by subtracting the first element (named "cp.offset”) of the
returned result form the cohort/period, and multiplying the rate-ratios by the second element of the
returned result (named "RR. fac").

Value

A numerical vector of length two, with names c("cp.offset”,"RR.fac"). The first is the offset
for the cohort period-axis, the second the multiplication factor for the rate-ratio scale.

Side-effect: A plot with axes and grid lines but no points or curves. Moreover, the option apc. frame.par
is given the value c("cp.offset”,"RR.fac"), which is recognized by apc.plot and apc.lines.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://bendixcarstensen.com

References

B. Carstensen: Age-Period-Cohort models for the Lexis diagram. Statistics in Medicine, 26: 3018-
3045, 2007.

See Also

apc.lines,apc.fit

Examples

par(mar=c(4,4,1,4))

res <-

apc.frame(a.lab=seq(390,90,20), cp.lab=seq(1880,2000,30), r.lab=c(1,2,5,10,20,50),
a.tic=seq(30,90,10), cp.tic=seq(1880,2000,10), r.tic=c(1:10,1:5%10),
gap=27)

res

What are the axes actually?

par(c("usr”,"xlog","ylog"))

How to plot in the age-part: a point at (50,10)

points(50, 10, pch=16, cex=2, col="blue")

How to plot in the cohort-period-part: a point at (1960,0.3)

points(1960-res[1], 0.3*res[2], pch=16, cex=2, col="red"”)

or referring to the period-cohort part of the plot

pc.points(1960, 0.3, pch=16, cex=1, col="green")

http://bendixcarstensen.com

18 apc.LCa

apc.LCa Fit Age-Period-Cohort models and Lee-Carter models with effects
modeled by natural splines.

Description

apc.LCa fits an Age-Period-Cohort model and sub-models (using apc.fit) as well as Lee-Carter
models (using LCa. fit). show.apc.LCa plots the models in little boxes with their residual deviance
with arrows showing their relationships.

Usage

apc.LCa(data,
keep.models = FALSE,

o)
show.apc.LCa(x,
dev.scale = TRUE,
top = "Ad", ...)
Arguments
data A data frame that must have columns A, P, D and Y, see e.g. apc.fit

keep.models Logical. Should the apc object and the 5 LCa objects be returned too?
Further parameters passed on to LCa.fit or boxes.matrix.
X The result from a call to apc.LCa.

dev.scale Should the vertical position of the boxes with the models be scales relative to
the deviance between the Age-drift model and the extended Lee-Carter model?

top The model presented at the top of the plot of boxes (together with any other
model with larger deviance) when vertical position is scaled by deviances. Only
"Ad", "AP", "AC", "APa" or "ACa" will make sense.
Details
The function apc.LCa fits all 9 models (well, 10) available as extension and sub-models of the
APC-model and compares them by returning deviance and residual df.
Value
A 9 by 2 matrix classified by model and deviance/df; optionally (if mode1s=TRUE) a list with the
matrix as dev, apc, an apc object (from apc. fit), and LCa, a list with 5 LCa objects (from LCa. fit).
Author(s)

Bendix Carstensen, http://bendixcarstensen.com

http://bendixcarstensen.com

apc.lines 19

See Also

apc.fit,LCa.fit

Examples

library(Epi)

clear()

Danish lung cancer incidence in 5x5x5 Lexis triangles
data(lungDK)

lc <- subset(lungDK, Ax>40)[,c("Ax","Px","D","Y")]
names(lc)[1:2] <= c("A","P")

head(1c)

al <- apc.LCa(1lc, npar=c(9,6,6,6,10), keep.models=TRUE, maxit=500, eps=10e-3)
show.apc.LCa(al, dev=TRUE)

Danish mortality data

Not run:

data(M.dk)

mdk <- subset(M.dk, sex==1)[,c("A","P","D","Y")]
head(mdk)

al <- apc.LCa(mdk, npar=c(15,15,20,6,6), maxit=50, eps=10e-3,
quiet=FALSE, VC=FALSE)

show.apc.LCa(al, dev=FALSE)

show.apc.LCa(al, dev=TRUE)

show.apc.LCa(al, top="AP")

Fit a reasonable model to Danish mortality data and plot results
mAPa <- LCa.fit(mdk, model="APa", npar=c(15,15,20,6,6), c.ref=1930,
a.ref=70, quiet=FALSE, maxit=250)
par(mfrow=c(1,3))

plot(mAPa)
End(Not run)

apc.lines Plot APC-estimates in an APC-frame.

Description

When an APC-frame has been produced by apc. frame, this function draws a set of estimates from
an APC-fit in the frame. An optional drift parameter can be added to the period parameters and
subtracted from the cohort and age parameters.

Usage

S3 method for class 'apc'
lines(x, P, C,
Scale = C("].Og","ln","r‘ates","inC","RR"),

20

frame.par =
drift =
co =

a0

po =
ci =

lwd

1ty =
col =
type =

knots
shade

apc.lines(x,

scale =

frame.par

drift =

co
a0

lwd

1ty =
col =
type =

knots
shade

Arguments

X

scale

frame.par

drift

apc.lines

options()[["apc.frame.par"]1],
9,

median(C[,1]),
median(A[,1]),
co + ao,

rep(FALSE, 3),
c(3,1,1),

1,

"black”,

o

FALSE,

FALSE,

P, C,
c("log”,"1In","rates"”,"”inc","RR"),
options()[["apc.frame.par”"]1],

9,
median(C[,1]),

= median(A[,1]),

po =
ci =

co + ao,

rep(FALSE, 3),
c(3,1,1),

1,

"black”,

e,

FALSE,

FALSE,

If an apc-object, (see apc.fit), then the arguments P, C, c@, a@ and p@ are
ignored, and the estimates from x plotted.
Can also be a 4-column matrix with columns age, age-specific rates, lower and

upper c.i., in which case period and cohort effects are taken from the arguments
P and C.

Period effects. Rate-ratios. Same form as for the age-effects.
Cohort effects. Rate-ratios. Same form as for the age-effects.

Are effects given on a log-scale? Character variable, one of "log”, "1n",
"rates”, "inc", "RR". If "log" or "1n" it is assumed that effects are log(rates)
and log(RRs) otherwise the actual effects are assumed given in A, P and C. If A
is of class apc, it is assumed to be "rates”.

2-element vector with the cohort-period offset and RR multiplicator. This will
typically be the result from the call of apc. frame. See this for details.

The drift parameter to be added to the period effect. If scale="log" this is
assumed to be on the log-scale, otherwise it is assumed to be a multiplicative
factor per unit of the first columns of A, P and C

apc.lines

co

a0
po

ci

lwd
1ty
col
type
knots

shade

Details

21

The cohort where the drift is assumed to be 0; the subtracted drift effect is
drift*x(C[,1]-c0).

The age where the drift is assumed to be 0.
The period where the drift is assumed to be 0.

Should confidence interval be drawn. Logical or character. If character, any

nn

occurrence of "a" or "A" produces confidence intervals for the age-effect. Sim-
ilarly for period and cohort.

Line widths for estimates, lower and upper confidence limits.
Linetypes for the three effects.

Colours for the three effects.

What type of lines / points should be used.

Should knots from the model be shown?

Should confidence intervals be plotted as shaded areas? If true, the setting of ci
is ignored.

Further parameters to be transmitted to points lines, matpoints or matlines
used for plotting the three sets of curves.

There is no difference between the functions apc.lines and lines. apc, except the the latter is the
lines method for apc objects.

The drawing of three effects in an APC-frame is a rather trivial task, and the main purpose of the
utility is to provide a function that easily adds the functionality of adding a drift so that several sets
of lines can be easily produced in the same frame.

Value

apc.lines returns (invisibly) a list of three matrices of the effects plotted.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://bendixcarstensen.com

See Also

apc.frame, pc.lines, apc.fit, apc.plot

http://bendixcarstensen.com

22 B.dk

B.dk Births in Denmark by year and month of birth and sex

Description

The number of live births as entered from printed publications from Statistics Denmark.

Usage
data(B.dk)

Format
A data frame with 1248 observations on the following 4 variables.

year Year of birth
month Month of birth
m Number of male live births

f Number of female live births

Details

Division of births by month and sex is only available for the years 1957-69 and 2002ff. For the
remaining period, the total no. births in each month is divided between the sexes so that the fraction
of boys is equal to the overall fraction for the years where the sex information is available.

There is a break in the series at 1920, when Sonderjylland was joined to Denmark.

Source

Statistiske Undersogelser nr. 19: Befolkningsudvikling og sundhedsforhold 1901-60, Copenhagen
1966. Befolkningens bevaegelser 1957 Befolkningens bevaegelser 1958 ... Befolkningens be-
vaegelser 2003 Befolkningens bevaegelser 2004 Vital Statistics 2005 Vital Statistics 2006

Examples

data(B.dk)
str(B.dk)
attach(B.dk)
Plot the no of births and the M/F-ratio
par(las = 1, mar = c(4,4,2,4))
matplot(year + (month - 0.5) / 12, cbind(m, f),
bty = "n", col = c("blue”, "red"), 1ty =1, lwd = 1, type = "1",
ylim = c(@, 5000), xlab = "Date of birth", ylab = "")
usr <- par()$usr
mtext(”"Monthly no. births in Denmark”, side = 3,
at = usr[1], adj = 0.25, line = 1/1.6)
text(usr[1:2] %x% cbind(c(19,1), c(19,1)) / 20,
usr[3:4] %*% cbind(c(1,19), c(2,18)) / 20,

bdendo

23

c("Boys","Girls"), col = c("blue”,"red"), adj = 0)
lines(year + (month - @.5) / 12, (m / (m + f) - 0.5) x 30000, lwd = 1)

axis(side =
axis(side =
axis(side =

tick =

4, at = (seq(0.505, 0.525, 0.005)-0.5) * 30000, labels = NA, tcl = -0.3)
4, at = (50:53 / 100 - 0.5) * 30000, labels = 50:53, tcl = -0.5)

4, at = (0.54 - 0.5) * 30000, labels = "% boys",

FALSE, mgp = ¢(3,0.1,0))

abline(v = 1920, col = gray(0.8))

bdendo

A case-control study of endometrial cancer

Description

The bdendo data frame has 315 rows and 13 columns, bdendo11 126 rows. These data concern a
study in which each case of endometrial cancer was matched with 4 controls. bdendo11 is a 1:1
mathed subset of bdendo. Matching was by date of birth (within one year), marital status, and

residence.

Format

These data frames have the following columns:

set:

d:

gall:
hyp:

ob:

est:
dur:
non:
duration:
age:
cest:
agegrp:
age3:

Source

Case-control set: a numeric vector

Case or control: a numeric vector (1=case, O=control)

Gall bladder disease: a factor with levels No Yes.
Hypertension: a factor with levels No Yes.

Obesity: a factor with levels No Yes.

A factor with levels No Yes.

Duration of conjugated oestrogen therapy: a factor with levels 0, 1, 2, 3, 4.
Use of non oestrogen drugs: a factor with levels No Yes.
Months of oestrogen therapy: a numeric vector.

A numeric vector.

Conjugated oestrogen dose: a factor with levels 9, 1, 2, 3.

A factor with levels 55-59 60-64 65-69 70-74 75-79 80-84
a factor with levels <64 65-74 75+

Breslow NE, and Day N, Statistical Methods in Cancer Research. Volume I: The Analysis of Case-
Control Studies. IARC Scientific Publications, ITARC:Lyon, 1980.

Examples

data(bdendo)
str(bdendo)

24

births

births

Births in a London Hospital

Description

Data from 500 singleton births in a London Hospital

Usage

data(births)

Format

A data frame with 500 observations on the following 8 variables.

id:
bweight:
lowbw:
gestwks:
preterm:
matage:
hyp:

sex:

Source

Anonymous

References

Identity number for mother and baby.
Birth weight of baby.

Indicator for birth weight less than 2500 g.
Gestation period.

Indicator for gestation period less than 37 weeks.

Maternal age.
Indicator for maternal hypertension.
Sex of baby: 1:Male, 2:Female.

Michael Hills and Bianca De Stavola (2002). A Short Introduction to Stata 8 for Biostatistics,

Timberlake Consultants Ltd

Examples

data(births)

blcalT 25

blcalT Bladder cancer mortality in Italian males

Description
Number of deaths from bladder cancer and person-years in the Italian male population 1955-1979,
in ages 25-79.

Format

A data frame with 55 observations on the following 4 variables:

age: Age at death. Left endpoint of age class
period: Period of death. Left endpoint of period
D: Number of deaths
Y: Number of person-years.

Examples
data(blcalT)
bootLexis Create a bootstrap sample of persons (as identified by lex.1id) from a
Lexis object
Description

lex.id is the person identifier in a Lexis object. This is used to sample persons from a Lexis
object. If a person is sampled, all records from this persons is transported to the bootstrap sample.

Usage
nid(Lx, ...)
S3 method for class 'Lexis'
nid(Lx, by=NULL, ...)

bootLexis(Lx, size = NULL, by = NULL, replace=TRUE)

Arguments
Lx A Lexis object.
Parameters passed on to other methods.
size Numeric. How many persons should be sampled from the Lexis object. De-

faults to the number of persons in the Lx, or, if by is given, to the number of per-
sons in each level of by. If by is given, size can have length length(unique(by)),
to indicate how many are sampled from each level of by.

26 bootLexis

by Character. Name of a variable (converted to factor) in the Lexis object.
Bootstrap sampling is done within each level of by.

Calculation of the number of persons (lex.id) is done within each level of by,
and a vector returned.

replace Should persons be sampled by replacement? Default is TRUE. Setting replace
to FALSE enables selecting a random subset of persons from the Lexis object.

Value

bootLexis returns a Lexis object of the same structure as the input, with persons bootstrapped. The
variable lex.id in the resulting Lexis object has values 1,2,... The original values of lex. id from
Lx are stored in the variable old. id.

nid counts the number of persons in a Lexis object, possibly by by. If by is given, a named vector
is returned.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com.

See Also

Relevel.Lexis,subset.Lexis

Examples

A small bogus cohort
xcoh <- data.frame(id = c("A", "B", "C"),
birth = c("1952-07-14", "1954-04-01", "1987-06-10"),
entry = c("1965-08-04", "1972-09-08", "1991-12-23"),
exit = c("1997-06-27", "1995-05-23", "1998-07-24"),
fail = c(1, o, 1),
sex = c("M","F","M"))

Convert to calendar years

for(i in 2:4) xcoh[,i] <- cal.yr(xcoh[,i])
xcoh <- xcoh[sample(1:3, 10, replace = TRUE),]
xcoh$entry <- xcoh$entry + runif(10, @, 10)
xcoh$exit <- xcoh$entry + runif (10, @, 10)

Lcoh <- Lexis(entry = list(per = entry),

exit = list(per = exit,
age = exit - birth),
exit.status = fail,
data = xcoh)

Lcoh

Lx <- splitLexis(Lcoh, breaks = 0:10 * 10, "age")
Lx

nid(Lx)

nid(Lx, by="sex")

Lb <- bootLexis(Lx)

http://bendixcarstensen.com

boxes.MS

head(Lb)
nid(bootLexis(Lx, size
Li <- bootLexis(Lx, by =
summary (Lx)

summary (Li)

L2 <- bootLexis(Lx, by = "sex
nid(L2, by = "sex")

summary (L2, by = "sex")

)]

n

’

"id") # superfluous

size =

c(2, 5))

27

boxes.MS

Draw boxes and arrows for illustration of multistate models.

Description

Boxes can be drawn with text (tbox) or a cross (dbox), and arrows pointing between the boxes
(boxarr) can be drawn automatically not overlapping the boxes. The boxes method for Lexis

objects generates displays of states with person-years and transitions with events or rates.

Usage

tbox(txt, x, y, wd, ht
font=2, lwd=2,
col.txt=par("fg")

’

’

col.border=par("fg"),
col.bg="transparent”)

dbox(x, y, wd, ht=wd,
font=2, lwd=2, cwd=5,
col.cross=par("fg"),
col.border=par("fg"),
col.bg="transparent”)
boxarr(b1, b2, offset=FALSE, pos=0.45, ...)
S3 method for class 'Lexis'
boxes(obj,
boxpos = FALSE,
wnult = 1.20,
hmult = 1.20 + 0.85%x(!show.Y),
cex = 1.40,
show = inherits(obj, "Lexis"),
show.Y = show,
scale.Y =1,
digits.Y =1,
show.BE = FALSE,
BE.sep = c("",""," "y,
show.D = show,
scale.D = FALSE,
digits.D = as.numeric(as.logical(scale.D)),
show.R = show & is.numeric(scale.R),
scale.R =1,

28

S3 method for class 'matrix'
boxes(obj,

digits.R = as.numeric(as.logical(scale.R)),

DR.sep = if(show.D) c("\n(",")") else c("",""),
eq.wd = TRUE,
eq.ht = TRUE,

wd,

ht,

subset = NULL,
exclude = NULL,
font = 1,
lwd = 2,
col.txt = par("fg"),
col.border = col.txt,

col.bg = "transparent”,
col.arr = par("fg"),
lwd.arr = 1lwd,

font.arr = font,
pos.arr = 0.45,
txt.arr = NULL,

col.txt.arr = col.arr,

offset.arr = 2,

)

<)

S3 method for class 'MS'
boxes(obj, sub.st, sub.tr, cex=1.5, ...)
fillarr(x1, y1, x2, y2, gap=2, fr=0.8,

Arguments

txt

X

y

wd

ht

font

lwd
col.txt
col.border

col.bg

cwd
col.cross
b1

angle=17, 1lwd=2, length=par(”"pin")[1]/30, ...)

Text to be placed inside the box.

x-coordinate of center of box.

y-coordinate of center of box.

width of boxes in percentage of the plot width.
height of boxes in percentage of the plot height.
Font for the text. Defaults to 2 (=bold).

Line width of the box borders.

Color for the text in boxes.

Color of the box border.

Background color for the interior of the box.
Arguments to be passed on to the call of other functions.
Width of the lines in the cross.

Color of the cross.

boxes.MS

Coordinates of the "from" box. A vector with 4 components, X, y, w, h.

boxes.MS

b2
offset

pos

obj

boxpos

wmult
hmult
cex

show

show.Y

scale.Y
digits.Y
show.BE

BE.sep

show.D

scale.D
digits.D
show.R

scale.R

digits.R
DR.sep

29

Coordinates of the "to" box; like b1.
Logical. Should the arrow be offset a bit to the left.
Numerical between 0 and 1, determines the position of the point on the arrow

which is returned.

A Lexis object or a transition matrix; that is a square matrix indexed by state
in both dimensions, and the (i, j)th entry different from NA if a transition ¢ to
7 can occur. If show.D=TRUE, the arrows between states are annotated by these
numbers. If show.Y=TRUE, the boxes representing states are annotated by the
numbers in the diagonal of obj.

For boxes.matrix obj is a matrix and for boxes.MS, obj is an MS. boxes object
(see below).

If TRUE the boxes are positioned equidistantly on a circle, if FALSE (the default)
you are queried to click on the screen for the positions. This argument can also
be a named list with elements x and y, both numerical vectors, giving the centers
of the boxes. These must be numbers between 0 and 100 indicating percentages
of the display in the two directions.

Multiplier for the width of the box relative to the width of the text in the box.
Multiplier for the height of the box relative to the height of the text in the box.
Character expansion for text in the box.

Should person-years and transitions be put in the plot. Ignored if obj is not a
Lexis object.

If logical: Should person-years be put in the boxes. If numeric: Numbers to put
in boxes.

What scale should be used for annotation of person-years.
How many digits after the decimal point should be used for the person-years.

Logical. Should number of persons beginning resp. ending follow up in each
state be shown? If given as character "nz" or "noz" the numbers will be shown,
but zeros omitted.

Character vector of length 4, used for annotation of the number of persons be-
ginning and ending in each state: 1st element precedes no. beginning, 2nd trails
it, 3rd precedes the no. ending (defaults to 8 spaces), and the 4th trails the no.
ending.

Should no. transitions be put alongside the arrows. Ignored if obj is nota Lexis
object.

Synonymous with scale.R, retained for compatibility.
Synonymous with digits.R, retained for compatibility.
Should the transition rates be shown on the arrows?

If this a scalar, rates instead of no. transitions are printed at the arrows, scaled
by scale.R.

How many digits after the decimal point should be used for the rates.

Character vector of length 2. If rates are shown, the first element is inserted
before and the second after the rate.

30

eq.wd
eq.ht

subset

exclude

col.arr

lwd.arr
font.arr

pos.arr

txt.arr
col.txt.arr

offset.arr

sub.st
sub.tr
x1

y1

X2

y2

gap

fr

angle
length

Details

boxes.MS

Should boxes all have the same width?
Should boxes all have the same height?

Draw only boxes and arrows for a subset of the states. Can be given either as a
numerical vector or character vector state names.

Exclude states from the plot. The complementary of subset. Ignored if subset
is given.

Color of the arrows between boxes. A vector of character strings, the arrows
are referred to as the row-wise sequence of non-NA elements of the transition
matrix. Thus the first ones refer to the transitions out of state 1, in order of states.

Line widths of the arrows.
Font of the text annotation the arrows.

Numerical between 0 and 1, determines the position on the arrows where the
text is written.

Text put on the arrows.
Colors for text on the arrows.

The amount offset between arrows representing two-way transitions, that is
where there are arrows both ways between two boxes.

Subset of the states to be drawn.

Subset of the transitions to be drawn.

x-coordinate of the starting point.

y-coordinate of the starting point.

x-coordinate of the end point.

y-coordinate of the end point.

Length of the gap between the box and the ends of the arrows.

Length of the arrow as the fraction of the distance between the boxes. Ignored
unless given explicitly, in which case any value given for gap is ignored.

What angle should the arrow-head have?

Length of the arrow head in inches. Defaults to 1/30 of the physical width of the
plot.

These functions are designed to facilitate the drawing of multistate models, mainly by automatic
calculation of the arrows between boxes.

tbox draws a box with centered text, and returns a vector of location, height and width of the box.
This is used when drawing arrows between boxes. dbox draws a box with a cross, symbolizing a
death state. boxarr draws an arrow between two boxes, making sure it does not intersect the boxes.
Only straight lines are drawn.

boxes.Lexis takes as input a Lexis object sets up an empty plot area (with axes 0 to 100 in both
directions) and if boxpos=FALSE (the default) prompts you to click on the locations for the state
boxes, and then draws arrows implied by the actual transitions in the Lexis object. The default is
to annotate the transitions with the number of transitions.

boxes.MS 31

A transition matrix can also be supplied, in which case the row/column names are used as state
names, diagonal elements taken as person-years, and off-diagonal elements as number of transitions.
This also works for boxes.matrix.

Optionally returns the R-code reproducing the plot in a file, which can be useful if you want to
produce exactly the same plot with differing arrow colors etc.

boxarr draws an arrow between two boxes, on the line connecting the two box centers. The offset
argument is used to offset the arrow a bit to the left (as seen in the direction of the arrow) on order to
accommodate arrows both ways between boxes. boxarr returns a named list with elements x, y and
d, where the two former give the location of a point on the arrow used for printing (see argument
pos) and the latter is a unit vector in the direction of the arrow, which is used by boxes.Lexis to
position the annotation of arrows with the number of transitions.

boxes.MS re-draws what boxes.Lexis has done based on the object of class MS produced by
boxes.Lexis. The point being that the MS object is easily modifiable, and thus it is a machinery to
make variations of the plot with different color annotations etc.

fill.arr is just a utility drawing nicer arrows than the default arrows command, basically by
using filled arrow-heads; called by boxarr.

Value

The functions tbox and dbox return the location and dimension of the boxes, c(x,y,w,h), which
are designed to be used as input to the boxarr function.

The boxarr function returns the coordinates (as a named list with names x and y) of a point on the
arrow, designated to be used for annotation of the arrow.

The function boxes.Lexis returns an MS object, a list with five elements: 1) Boxes - a data frame
with one row per box and columns xx, yy, wd, ht, font, lwd, col.txt, col.border and col.bg,
2) an object State.names with names of states (possibly an expression, hence not possible to
include as a column in Boxes), 3) a matrix Tmat, the transition matrix, 4) a data frame, Arrows with
one row per transition and columns: lwd.arr, col.arr, pos.arr, col.txt.arr, font.arr and
offset.arr and 5) an object Arrowtext with names of states (possibly an expression, hence not
possible to include as a column in Arrows)

An MS object is used as input to boxes.MS, the primary use is to modify selected entries in the MS
object first, e.g. colors, or supply sub-setting arguments in order to produce displays that have the
same structure, but with different colors etc.

Author(s)

Bendix Carstensen

See Also

tmat.Lexis, legendbox

Examples

par(mar=c(0,0,0,0), cex=1.5)
plot(NA,

nan

bty="n",

boxes.MS

x1im=0:1%100, ylim=0:1%100, xaxt="n", yaxt="n", xlab="", ylab="")

bw <- tbox("Well” , 10, 60, 22, 10, col.txt="blue")
bo <- tbox("other Ca”, 45, 80, 22, 10, col.txt="gray")
bc <- tbox("Ca” , 45, 60, 22, 10, col.txt="red")
bd <- tbox("DM" , 45, 40, 22, 10, col.txt="blue")

bcd <- tbox("Ca + DM" , 80, 60, 22, 10, col.txt="gray")
bdc <- tbox("DM + Ca” , 80, 40, 22, 10, col.txt="red")
boxarr(bw, bo , col=gray(0.7), lwd=3)
Note the argument adj= can takes values outside (0,1)
text(boxarr(bw, bc , col="blue", 1lwd=3),
expression(lambda[Well]), col="blue", adj=c(1,-0.2), cex=0.8)
boxarr(bw, bd , col=gray(0.7) , lwd=3)
boxarr(bc, bcd, col=gray(0.7) , lwd=3)
text(boxarr(bd, bdc, col="blue"”, lwd=3),
expression(lambda[DM]), col="blue", adj=c(1.1,-0.2), cex=0.8)

Set up a transition matrix allowing recovery

tm <- rbind(c(NA,1,1), c(1,NA,1), c(NA,NA,NA))

rownames (tm) <- colnames(tm) <- c("Cancer","Recurrence”, "Dead")
tm

boxes.matrix(tm, boxpos=TRUE)

Illustrate texting of arrows

boxes.Lexis(tm, boxpos=TRUE, txt.arr=c("en","to","tre","fire"))

zz <- boxes(tm, boxpos=TRUE, txt.arr=c(expression(lambda[C]),
expression(mu[C]),
"recovery”,
expression(mulR])))

Change color of a box

zz$Boxes[3,c("col.bg","col.border”)] <- "green”
boxes(zz)

Set up a Lexis object
data(DMlate)
str(DMlate)
dml <- Lexis(entry=list(Per=dodm, Age=dodm-dobth, DMdur=0),
exit=list(Per=dox),
exit.status=factor(!is.na(dodth),labels=c("DM","Dead")),
data=DMlate[1:1000,])

Cut follow-up at Insulin

dmi <- cutLexis(dml, cut=dml$doins, new.state="Ins", pre="DM")
summary (dmi)

boxes(dmi, boxpos=TRUE)

boxes(dmi, boxpos=TRUE, show.BE=TRUE)

boxes(dmi, boxpos=TRUE, show.BE="nz")

boxes(dmi, boxpos=TRUE, show.BE="nz", BE.sep=c("In:",” Out:",""))

Set up a bogus recovery date just to illustrate two-way transitions
dmi$dorec <- dmi$doins + runif(nrow(dmi),@.5,10)
dmi$dorec[dmi$dorec>dmi$dox] <- NA

dmR <- cutlLexis(dmi, cut=dmi$dorec, new.state="DM", pre="Ins")

BrCa 33

summary(dmR)

boxes(dmR, boxpos=TRUE)

boxes(dmR, boxpos=TRUE, show.D=FALSE)

boxes(dmR, boxpos=TRUE, show.D=FALSE, show.Y=FALSE)

boxes(dmR, boxpos=TRUE, scale.R=1000)

MSobj <- boxes(dmR, boxpos=TRUE, scale.R=1000, show.D=FALSE)
MSobj <- boxes(dmR, boxpos=TRUE, scale.R=1000, DR.sep=c(”" (",")"))
class(MSobj)

boxes(MSobj)

MSobj$Boxes[1,c("col.txt","col.border”)] <- "red"
MSobj$Arrows[1:2,"col.arr"] <- "red”

boxes(MSobj)

BrCa Clinical status, relapse, metastasis and death in 2982 women with
breast cancer.

Description

This dataset is a transformation of the example dataset used by Crowther and Lambert in their
multistate paper.

Usage
data(BrCa)

Format
A data frame with 2982 observations on the following 17 variables:

pid Person-id; numeric

year Calendar year of diagnosis

age Age at diagnosis

meno Menopausal status; a factor with levels pre post

size Tumour size; a factor with levels <=20 mm >20-5@ mm >50 mm
grade Tumour grade; a factor with levels 2 3

nodes Number of positive lymph nodes, a numeric vector

pr Progesteron receptor level

pr.tr Transformed progesteron level

er Estrogen receptor level

hormon Hormon therapy at diagnosis; a factor with levels no yes
chemo Chemotherapy treatment; a factor with levels no yes

tor Time of relapse, years since diagnosis

tom Time of metastasis, years since diagnosis

34 brv

tod Time of death, years since diagnosis
tox Time of exit from study, years since diagnosis

xst Vital status at exit; a factor with levels Alive Dead

Details

The dataset has been modified to contain the times (since diagnosis) of the events of interest, to
comply with the usual structure of data.

Source

The original data were extracted from: http://fmwww.bc.edu/repec/bocode/m/multistate_
example.dta, this is modified representation of the same amount of information.

References

The data were used as example in the paper by Crowther and Lambert: Parametric multistate sur-
vival models: Flexible modelling allowing transition-specific distributions with application to esti-
mating clinically useful measures of effect differences; Stat Med 36 (29), pp 4719-4742, 2017. (No,
it is not the paper, just the title.)

A parallel analysis using the Lexis machinery is available as: http://bendixcarstensen.com/
AdvCoh/papers/bcMS. pdf

Examples

data(BrCa)

brv Bereavement in an elderly cohort

Description

The brv data frame has 399 rows and 11 columns. The data concern the possible effect of marital
bereavement on subsequent mortality. They arose from a survey of the physical and mental health
of a cohort of 75-year-olds in one large general practice. These data concern mortality up to 1
January, 1990 (although further follow-up has now taken place).

Subjects included all lived with a living spouse when they entered the study. There are three distinct
groups of such subjects: (1) those in which both members of the couple were over 75 and therefore
included in the cohort, (2) those whose spouse was below 75 (and was not, therefore, part of the
main cohort study), and (3) those living in larger households (that is, not just with their spouse).

http://fmwww.bc.edu/repec/bocode/m/multistate_example.dta
http://fmwww.bc.edu/repec/bocode/m/multistate_example.dta
http://bendixcarstensen.com/AdvCoh/papers/bcMS.pdf
http://bendixcarstensen.com/AdvCoh/papers/bcMS.pdf

cal.yr 35

Format

This data frame contains the following columns:

id subject identifier, a numeric vector
couple couple identifier, a numeric vector
dob date of birth, a date

doe date of entry into follow-up study, a date
dox date of exit from follow-up study, a date

dosp date of death of spouse, a date (if the spouse was still alive at the end of follow-up,this was
coded to January 1, 2000)

fail status at end of follow-up, a numeric vector (O=alive,1=dead)
group see Description, a numeric vector

disab disability score, a numeric vector

health perceived health status score, a numeric vector

sex a factor with levels Male and Female

Source

Jagger C, and Sutton CJ, Death after Marital Bereavement. Statistics in Medicine, 10:395-404,
1991. (Data supplied by Carol Jagger).

Examples
data(brv)
cal.yr Functions to convert character, factor and various date objects into a
number, and vice versa.
Description

Dates are converted to a numerical value, giving the calendar year as a fractional number. 1 January
1970 is converted to 1970.0, and other dates are converted by assuming that years are all 365.25
days long, so inaccuracies may arise, for example, 1 Jan 2000 is converted to 1999.999. Differences
between converted values will be 1/365.25 of the difference between corresponding Date objects.

Usage

cal.yr(x, format="%Y-%m-%d", wh=NULL)
S3 method for class 'cal.yr'
as.Date(x, ...)

36

Arguments

X

format

wh

Value

cal.yr

A factor or character vector, representing a date in format format, or an object
of class Date, POSIX1t, POSIXct, date, dates or chron (the latter two requires
the chron package). If x is a data frame, all variables in the data-frame which
are of one the classes mentioned are converted to class cal.yr. See arguemt wh,
though.

Format of the date values if x is factor or character. If this argument is sup-
plied and x is a datafame, all character variables are converted to class cal.yr.
Factors in the dataframe will be ignored.

Indices of the variables to convert if x is a data frame. Can be either a numerical
or character vector.

Arguments passed on from other methods.

n o n

cal.yr returns a numerical vector of the same length as x, of class c("cal.yr"”,"numeric”). If x
is a data frame a dataframe with some of the columns converted to class "cal.yr" is returned.

as.Date.cal.yr returns a Date object.

Author(s)

Bendix Carstensen, Steno Diabetes Center Copenhagen, <b@bxc.dk>, http://bendixcarstensen.

com

See Also

DateTimeClasses, Date

Examples

Character vector of dates:
birth <- c("14/07/1852","01/04/1954","10/06/1987","16/05/1990",

"12/11/1980","01/01/1997","@1/@1/1998","01/01/1999")

Proper conversion to class "Date”:

birth.dat <- as.Date(birth, format="%d/%m/%Y")

Converson of character to class "cal.yr”

bt.yr <- cal.yr(birth, format="%d/%m/%Y")

Back to class "Date”:

bt.dat <- as.Date(bt.yr)

Numerical calculation of days since 1.1.1970:

days <- Days <- (bt.yr-1970)*365.25

Blunt assignment of class:

class(Days) <- "Date"”

Then data.frame() to get readable output of results:
data.frame(birth, birth.dat, bt.yr, bt.dat, days, Days, round(Days))

http://bendixcarstensen.com
http://bendixcarstensen.com

cbind.Lexis 37

cbind.Lexis Combining a Lexis objects with data frames or other Lexis objects

Description

A Lexis object may be combined side-by-side with data frames. Or several Lexis objects may
stacked, possibly increasing the number of states and time scales.

Usage
S3 method for class 'Lexis'
cbind(...)
S3 method for class 'Lexis'
rbind(...)
Arguments
For cbind a sequence of data frames or vectors of which exactly one has class
Lexis. For rbind a sequence of Lexis objects, supposedly representing follow-
up in the same population.
Details

Arguments to rbind.Lexis must all be Lexis objects; except for possible NULL objects. The
timescales in the resulting object will be the union of all timescales present in all arguments. Values
of timescales not present in a contributing Lexis object will be set to NA. The breaks for a given
time scale will be NULL if the breaks of the same time scale from two contributing Lexis objects
are different.

The arguments to cbind.Lexis must consist of at most one Lexis object, so the method is intended
for amending a Lexis object with extra columns without losing the Lexis-specific attributes.
Value

A Lexis object. rbind renders a Lexis object with timescales equal to the union of timescales in
the arguments supplied. Values of a given timescale are set to NA for rows corresponding to supplied
objects. cbind basically just adds columns to an existing Lexis object.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also

subset.Lexis

http://bendixcarstensen.com

38

ccwe

Examples

A small bogus cohort
xcoh <- structure(list(id = c("A", "B", "C"),
birth = c("14/07/1952", "@1/04/1954", "10/06/1987"),
entry = c("04/08/1965", "@8/09/1972", "23/12/1991"),
exit = c("27/06/1997", "23/05/1995", "24/07/1998"),
fail = c(1, 0, 1)),
.Names = c("id", "birth", "entry"”, "exit"”, "fail"),
row.names = c("1", "2", "3"),
class = "data.frame”)

Convert the character dates into numerical variables (fractional years)
xcoh <- cal.yr(xcoh, format="%d/%m/%Y", wh=2:4)

See how it looks

xcoh

str(xcoh)

Define as Lexis object with timescales calendar time and age
Lcoh <- Lexis(entry = list(per=entry),
exit = list(per=exit, age=exit-birth),
exit.status = fail,
data = xcoh)

Lcoh
cbind(Lcoh, zz=3:5)

Lexis object wit time since entry time scale
Dcoh <- Lexis(entry = list(per=entry, tfe=0),
exit = list(per=exit),
exit.status = fail,
data = xcoh)
A bit meningless to combie these two, really...
rbind(Dcoh, Lcoh)

Split different places

sL <- splitLexis(Lcoh, time.scale="age", breaks=0:20x%5)
sD <- splitLexis(Dcoh, time.scale="tfe", breaks=0:50%2)
sDL <- rbind(sD, sL)

ccwe Generate a nested case-control study

Description

Given the basic outcome variables for a cohort study: the time of entry to the cohort, the time of exit
and the reason for exit ("failure" or "censoring"), this function computes risk sets and generates a
matched case-control study in which each case is compared with a set of controls randomly sampled
from the appropriate risk set. Other variables may be matched when selecting controls.

ccwe 39

Usage

ccwe(entry=0, exit, fail, origin=0, controls=1, match=list(),
include=list(), data=NULL, silent=FALSE)

Arguments
entry Time of entry to follow-up
exit Time of exit from follow-up
fail Status on exit (1=Fail, 0=Censored)
origin Origin of analysis time scale
controls The number of controls to be selected for each case
match List of categorical variables on which to match cases and controls
include List of other variables to be carried across into the case-control study
data Data frame in which to look for input variables
silent If FALSE, echos a . to the screen for each case-control set created; otherwise
produces no output.
Value

The case-control study, as a dataframe containing:

Set case-control set number

Map row number of record in input dataframe
Time failure time of the case in this set

Fail failure status (1=case, O=control)

These are followed by the matching variables, and finally by the variables in the include list

Author(s)
David Clayton

References

Clayton and Hills, Statistical Models in Epidemiology, Oxford University Press, Oxford:1993.

See Also

Lexis

Examples

#

For the diet and heart dataset, create a nested case-control study

using the age scale and matching on job

#

data(diet)

dietcc <- ccwc(doe, dox, chd, origin=dob, controls=2, data=diet,
include=energy, match=job)

40

ci.Crisk

ci.Crisk

Compute cumulative risks and expected sojourn times from models for
cause-specific rates.

Description

Consider a list of parametric models for rates of competing events, such as different causes of death,
A, B, C, say. From estimates of the cause-specific rates we can compute 1) the cumulative risk of
being in each state ("Surv’ (=no event) and A, B and C) at different times, 2) the stacked cumulative
rates such as A, A+C, A+C+Surv and 3) the expected (truncated) sojourn times in each state up to
each time point.

This can be done by simple numerical integration using estimates from models for the cause specific
rates. But the standard errors of the results are analytically intractable.

The function ci.Crisk computes estimates with confidence intervals using simulated samples from
the parameter vectors of supplied model objects. Some call this a parametric bootstrap.

The times and other covariates determining the cause-specific rates must be supplied in a data frame
which will be used for predicting rates for all transitions.

Usage

ci.Crisk(mods,

Arguments

mods

nd

tham

nB

perm

nd,
tnam
nB
perm
alpha
sim.res

names(nd)[1],

1000,
length(mods):0 + 1,
0.05,

"none ")

A named list of glm/gam model objects representing the cause-specific rates. If
the list is not named the function will crash. The names will be used as names
for the states (competing risks), while the state without any event will be called
"Surv".

A data frame of prediction points and covariates to be used on all models sup-
plied in mods.

Name of the column in nd which is the time scale.It must represent endpoints of
equidistant intervals.

Scalar. The number of simulations from the (posterior) distribution of the model
parameters to be used in computing confidence limits.

Numerical vector of length length(mods)+1 indicating the order in which states
are to be stacked. The 'Surv' state is taken to be the first, the remaining in the
reverse order supplied in the mods argument. The default is therefore to stack
with the survival as the first, which may not be what you normally want.

ci.Crisk 41

alpha numeric. 1 minus the confidence level used in calculating the c.i.s

sim.res Character. What simulation samples should be returned. If 'none"' (the default)
the function returns a list of 3 arrays (see under ’value’). If 'rates' it returns an
array of dimension nrow(nd) x length(mod) x nB of bootstrap samples of the
rates. If 'crisk’ it returns an array of dimension nrow(nd) x length(mod)+1
x nB of bootstrap samples of the cumulative rates. Only the first letter matters,
regardless of whether it is in upper lower case.

Value

If sim.res="none' a named list with 4 components, the first 3 are 3-way arrays classified by time,
state and estimate/confidence interval:

e Crisk Cumulative risks for the length(mods) events and the survival

* Srisk Stacked versions of the cumulative risks

* Stime Sojourn times in each states

* time Endpoints of intervals. It is just the numerical version of the names of the first dimension

of the three arrays

All three arrays have (almost) the same dimensions:

* time, named as tnam; endpoints of intervals. Length nrow(nd).

* cause. The arrays Crisk and Stime have values "Surv" plus the names of the list mods (first
argument). Srisk has length length(mod), with each level representing a cumulative sum of
cumulative risks, in order indicated by the perm argument.

* Unnamed, ci.50%, ci.2.5%, ci.97.5% representing quantiles of the quantities derived from
the bootstrap samples. If alpha is different from 0.05, names are of course different.

If sim.res="rates' the function returns bootstrap samples of rates for each cause as an array
classified by time, cause and bootstrap sample.

If sim.res="crisk"' the function returns bootstrap samples of cumulative risks for each cause
(including survival) as an array classified by time, state (= causes + surv) and bootstrap sample.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also

mat2pol simLexis plotCIF ci.surv

Examples

library(Epi)
data(DMlate)

A Lexis object for survival
Ldm <- Lexis(entry = list(per
age

dodm,
dodm-dobth,

http://bendixcarstensen.com

42

exit =

exit.status =

data =

summary (Ldm, timeScal

Cut at OAD and Ins
Mdm <- mcutLexis(Ldm,
wh

new.states
seq.states

ties

summary (Mdm$lex.dur)

restrict to DM stat
Sdm <- splitlLexis(fac

tim
bre
summary (Sdm)
summary (Relevel (Sdm,

boxes(Relevel (Sdm, c(
boxpos = list(x
y

scale.R = 100)

glm models for the
system.time(
mD <- glm.Lexis(Sdm,
system. time(
m0 <- glm.Lexis(Sdm,
system.time(
ml <- glm.Lexis(Sdm,

intervals for calcu
int <- 1/ 100

nd <- data.frame(tfd = seq(@, 10, int)) # not the same as the split,
and totally unrelated to it

cumulaive risks wit
(too few timepoints
system. time(

tfd =0),
list(per = dox),

factor(!is.na(dodth), labels = c("DM","Dead"”)),

DMlate[sample(1:nrow(DMlate),1000),])
es = TRUE)

times

= c('dooad', 'doins"'),
= c('0OAD', 'Ins"),

= FALSE,

= TRUE)

e and split

torize(subset(Mdm, lex.Cst == "DM")),
e.scale = "tfd",

aks = seq(0,20,1/12))

c(1, 4, 2, 3)))
1, 4, 2, 3)),

= c(15, 85, 80, 15),
c(85, 85, 20, 15)),

cause-specific rates
~ Ns(tfd, knots=0:6%*2), to = 'Dead'))

~ Ns(tfd, knots=0:6%2), to = 'OAD'))

~ Ns(tfd, knots=0:6%2), to '"Ins'))

lation of predicted rates

h confidence intervals
, too few simluations)

ci.cum

res <- ci.Crisk(1list(OAD = mO,
Ins = mI,
Dead = mD),
nd = data.frame(tfd = 0:100 / 10),
nB = 100,
perm = 4:1))
str(res)
ci.cum Compute cumulative sum of estimates.

ci.cum

Description

43

Computes the cumulative sum of parameter functions and the standard error of it. Used for com-
puting the cumulative rate, or the survival function based on a glm with parametric baseline.

Usage

ci.cum(obj,

ctr.mat =

subset
intl
alpha
Exp
ci.Exp
sample
ci.surv(obj
ctr.mat
subset
intl
alpha
Exp
sample

Arguments

obj
ctr.mat

subset

intl

alpha
Exp
ci.Exp

sample

Details

NULL,
NULL,
NULL,
0.05,
TRUE,
FALSE,
FALSE)

NULL,
NULL,
NULL,
0.05,
TRUE,
FALSE)

A model object (of class 1m, glm.

Matrix or data frame.

If ctr.mat is a matrix, it should be a contrast matrix to be multiplied to the
parameter vector, i.e. the desired linear function of the parameters.

If it is a data frame it should have columns corresponding to a prediction data
frame for obj, see details for ci.lin.

Subset of the parameters of the model to which a matrix ctr.mat should be
applied.

Interval length for the cumulation. Either a constant or a numerical vector of
length nrow(ctr.mat). If omitted taken as the difference between the two first
elments if the first column in ctr.mat, assuming that that holds the time scale.
A note is issued in this case.

Significance level used when computing confidence limits.
Should the parameter function be exponentiated before it is cumulated?

Should the confidence limits for the cumulative rate be computed on the log-
scale, thus ensuring that exp(-cum.rate) is always in [0,1]?

Should a sample of the original parameters be used to compute a cumulative
rate?

The purpose of ci.cum is to the compute cumulative rate (integrated intensity) at a set of points
based on a model for the rates. ctr.mat is a matrix which, when premultiplied to the parameters

44

ci.cum

of the model returns the (log)rates at a set of equidistant time points. If log-rates are returned from
the prediction method for the model, the they should be exponentiated before cumulated, and the
variances computed accordingly. Since the primary use is for log-linear Poisson models the Exp
parameter defaults to TRUE.

Each row in the object supplied via ctr.mat is assumed to represent a midpoint of an interval.
ci.cum will then return the cumulative rates at the end of these intervals. ci.surv will return the
survival probability at the start of each of these intervals, assuming the the first interval starts at 0 -
the first row of the resultis c(1,1,1).

The ci.Exp argument ensures that the confidence intervals for the cumulative rates are always
positive, so that exp(-cum.rate) is always in [0,1].

Value

A matrix with 3 columns: Estimate, lower and upper c.i. If sample is TRUE, a single sampled
vector is returned, if sample is numeric a matrix with sample columns is returned, each column a
cumulative rate based on a random sample from the distribution of the parameter estimates.

ci.surv returns a 3 column matrix with estimate, lower and upper confidence bounds for the sur-
vival function.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also

See also ci.lin, ci.pred

Examples

Packages required for this example
library(splines)

library(survival)

data(lung)

par(mfrow=c(1,2))

Plot the Kaplan-meier-estimator
plot(survfit(Surv(time, status==2) ~ 1, data=lung))

Declare data as Lexis

lunglL <- Lexis(exit = list(tfd=time),
exit.status = (status == 2) * 1,
data = lung)

summary (lunglL)

Split the follow-up every 10 days
sL <- splitLexis(lungL, "tfd", breaks=seq(0,1100,10))
summary (sL)

Fit a Poisson model with a natural spline for the effect of time (left
end points of intervals are used as covariate)

http://bendixcarstensen.com

ci.eta 45

mp <- glm(cbind(lex.Xst == 1, lex.dur)
~ Ns(tfd,knots = c(@, 50, 100, 200, 400, 700)),
family = poisreg,
data = slL)

mp is now a model for the rates along the time scale tfd

prediction data frame for select time points on this time scale
nd <- data.frame(tfd = seq(5,995,10)) # *midpoints* of intervals
Lambda <- ci.cum (mp, nd, intl=10)

surv <= ci.surv(mp, nd, intl=10)

Put the estimated survival function on top of the KM-estimator
recall the ci.surv return the survival at *startx of intervals
matshade(nd$tfd - 5, surv, col = "Red”, alpha = 0.15)

Extract and plot the fitted intensity function

lambda <- ci.pred(mp, nd) * 365.25 # mortality

matshade(nd$tfd, lambda, log = "y", ylim = c(0.2, 5), plot = TRUE,
xlab = "Time since diagnosis”,
ylab = "Mortality per year")

same thing works with gam from mgcv
library(mgcv)
mg <- gam(cbind(lex.Xst == 1, lex.dur) ~ s(tfd), family = poisreg, data=sL)
matshade(nd$tfd - 5, ci.surv(mg, nd, intl=10), plot=TRUE,
xlab = "Days since diagnosis”, ylab="P(survival)")
matshade(nd$tfd , ci.pred(mg, nd) * 365.25, plot=TRUE, log="y",
xlab = "Days since diagnosis"”, ylab="Mortality per 1 py")

ci.eta Linear predictor (eta) from a formula, coefficients, vcov and a predic-
tion frame.

Description
Computes the linear predictor with its confidence limits from the model formula and the estimated
parameters with the vcov.

Usage

ci.eta(form, cf, vcv, newdata,
name.check = TRUE,
alpha = 0.05, df = Inf, raw = FALSE)

Arguments

form A model formula. A one-sided formula will suffice; left side will be ignored if
two-sided.

cf Coefficients from a model using formula.

46

VCV

newdata

name.check

alpha
df

raw

Details

ci.lin

variance-covariance matrix from a model using formula.

Prediction data frame with variables used in formula. Can also be a list of 2 or
4 prediction frames, for details see ci.lin.

Logical. Check if the column names of the genereated model matrix are identical
to the names of the supplied coef vector.

Significance level for calculation of c.i.

Integer. Number of degrees of freedom in the t-distribution used to compute the
quantiles used to construct the confidence intervals.

Logical. Should predictions and their vcov be returned instead of predictions
and confidence limits?

Does pretty much the same as ci.lin, but requires only a formula and coefficients with vcov and
not a full model object. Designed to avoid saving entire (homongously large) model objects and
still be able to compute predictions. But only the linear predictor is returned, if there is a link in
your model function it is your own responsibility to back-transform. If the model formula contains
reference to vectors of spline knots or similar these must be in the global environment.

There is no guarantee that this function works for models that do not inherit from 1m. But there is a
guarantee that it will not work for gam objects with s() terms.

Value

The linear predictor for the newdata with a confidence interval as a nrow(newdata) by 3 matrix. If
raw=TRUE, a list the linear predictor (eta) and its variance-covariance matrix (var).

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also
ci.lin
ci.lin Compute linear functions of parameters with standard errors and con-
fidence limits, optionally transforming to a different scale.
Description

For a given model object the function computes a linear function of the parameters and the corre-
sponding standard errors, p-values and confidence intervals.

http://bendixcarstensen.com

ci.lin

Usage

ci.lin(obj,
ctr.mat
subset
subint
xvars

diffs

fnam

vcov

alpha

df

Exp

sample
ci.exp(...

Wald(obj, Ho=0,
ci.mat(alpha

ci.pred(obj,
newdata,

47

NULL,
NULL,
NULL,
NULL,
FALSE,
Idiffs,
FALSE,
0.05,
Inf,
FALSE,
FALSE)

, Exp = TRUE, pval = FALSE)

-)
0.05, df = Inf)

Exp = NULL,

alpha

0.05)

ci.ratio(r1, r2,

sel
se2
log.tr
alpha
pval

Arguments

obj

ctr.mat

Xvars

subset

NULL,

NULL,

lis.null(sel) & !is.null(se2),
0.05,

FALSE)

A model object (in general of class glm, but for ci.lin and ci.exp it may also
be of class 1m, coxph, survreg, clogistic, cch, 1Ime, mer, 1merMod, glmerMod,
gls, nls, gnlm, MIresult, mipo, polr, or rq).

Matrix, data frame or list (of two or four data frames).

If ctr.mat is a matrix, it should be a contrast matrix to be multiplied to the
parameter vector, i.e. the desired linear function of the parameters.

If it is a data frame it should have columns corresponding to a prediction frame,
see details.

If it is a list, it must contain two or four data frames that are (possibly partial)
prediction frames for obj, see argument xvars and details.

Character vector. If quantitative variables in the model are omitted from data
frames supplied in a list to ctr.mat, they should be listed here. Omitted factors
need not be mentioned here.

The subset of the parameters to be used. If given as a character vector, the
elements are in turn matched against the parameter names (using grep) to find
the subset. Repeat parameters may result from using a character vector. This is
considered a facility.

48

subint

diffs

fnam

VCoVv

alpha
df

Exp

sample

pval

Ho

newdata

ri,r2

sel, se2

log.tr

ci.lin

Character. subset selection, but where each element of the character vector
is used to select a subset of parameters and only the intersection of these is
returned.

If TRUE, all differences between parameters in the subset are computed, and the
subset argument is required. The argument ctr.mat is ignored. If obj inherits
from 1m, and subset is given as a string subset is used to search among the
factors in the model and differences of all factor levels for the first match are
shown. If subset does not match any of the factors in the model, all pairwise
differences between parameters matching are returned.

Should the common part of the parameter names be included with the annotation
of contrasts? Ignored if diffs==T. If a string is supplied this will be prefixed to
the labels.

Should the covariance matrix of the set of parameters be returned? If this is set,
Exp is ignored. See details.

Significance level for the confidence intervals.

Integer. Number of degrees of freedom in the t-distribution used to compute the
quantiles used to construct the confidence intervals.

For ci.lin, if TRUE columns 5:6 are replaced with exp(columns 1,5,6). For
ci.exp, if FALSE, the untransformed parameters are returned. For ci.pred itin-
dicates whether the predictions should be exponentiated - the default (Exp=NULL)
is to make a prediction with a Wald CI on the scale of the linear predictor and
back-transform it by the inverse link function; if FALSE, the prediction on the
link scale is returned.

Logical or numerical. If TRUE or numerical a sample of size as.numeric(sample)
is drawn from the multivariate normal with mean equal to the (subset defined)
coefficients and variance equal to the estimated variance-covariance of these.
These are then transformed by ctr.mat and returned.

Logical. Should a column of P-values be included with the estimates and confi-
dence intervals output by ci.exp.

Numeric. The null values for the selected/transformed parameters to be tested
by a Wald test. Must have the same length as the selected parameter vector.

Parameters passed on to ci.lin.
Data frame of covariates where prediction is made.

Estimates of rates in two independent groups, with confidence limits. Can be
either 3-column matrices or data frames with estimates and confidence intervals
or 2 two column structures with confidence limits only. Only the confidence
limits are used.

Standard errors of log-rates in the two groups. If given, it is assumed that r1 and
r2 represent log-rates.

Logical, if true, it is assumed that r1 and r2 represent log-rates with confidence
intervals.

ci.lin 49

Value

ci.lin returns a matrix with number of rows and row names as ctr.mat. The columns are Esti-
mate, Std.Err, z, P, 2.5% and 97.5% (or according to the value of alpha). If vcov=TRUE, instead a
list of length 2 with components coef (a vector), the desired functional of the parameters and vcov
(a square matrix), the variance covariance matrix of this, is returned but not printed. If Exp==TRUE
the confidence intervals for the parameters are replaced with three columns: exp(estimate,c.i.).

ci.exp returns only the exponentiated parameter estimates with confidence intervals. It is merely a
wrapper for ci.lin, fishing out the last 3 columns from ci.lin(...,Exp=TRUE). If you just want
the estimates and confidence limits, but not exponentiated, use ci.exp(...,Exp=FALSE).

If ctr.mat is a data frame, the model matrix corresponding to this is constructed and supplied. This
is only supported for objects of class 1m, glm, gam and coxph.

So the default behaviour will be to produce the same as ci.pred, apparently superfluous. The
purpose of this is to allow the use of the arguments vcov that produces the variance-covariance
matrix of the predictions, and sample that produces a sample of predictions using sampling from
the multivariate normal with mean equal to parameters and variance equal to the hessian.

If ctr.mat is a list of two data frames, the difference of the predictions from using the first versus
the last as newdata arguments to predict is computed. Columns that would be identical in the two
data frames can be omitted (see below), but names of numerical variables omitted must be supplied
in a character vector xvars. Factors omitted need not be named.

If the second data frame has only one row, this is replicated to match the number of rows in the first.
This facility is primarily aimed at teasing out RRs that are non-linear functions of a quantitative
variable without setting up contrast matrices using the same code as in the model. Note however if
splines are used with computed knots stored in a vector such as Ns(x, knots=kk) then the kk must
be available in the (global) environment; it will not be found inside the model object. In practical
terms it means that if you save model objects for later prediction you should save the knots used in
the spline setups too.

If ctr.mat is a list of four data frames, the difference of the difference of predictions from using the
first and second versus difference of predictions from using the third and fourth is computed. Simply
(pr1-pr2) - (pr3-pr4) with obvious notation. Useful to derive esoteric interaction effects.

Finally, only arguments Exp, vcov, alpha and sample from ci.lin are honored when ctr.mat is
a data frame or a list of two data frames.

You can leave out variables (columns) from the two data frames that would be identical, basi-
cally variables not relevant for the calculation of the contrast. In many cases ci.lin (really
Epi:::ci.dfr) can figure out the names of the omitted columns, but occasionally you will have to
supply the names of the omitted variables in the xvars argument. Factors omitted need not be listed
in xvars, although no harm is done doing so.

Wald computes a Wald test for a subset of (possibly linear combinations of) parameters being equal
to the vector of null values as given by H0. The selection of the subset of parameters is the same
as for ci.lin. Using the ctr.mat argument makes it possible to do a Wald test for equality of
parameters. Wald returns a named numerical vector of length 3, with names Chisq, d.f. and P.

ci.mat returns a 2 by 3 matrix with rows ¢(1,0,@) and c(@,-1,1)*1.96, devised to post-multiply
to a p by 2 matrix with columns of estimates and standard errors, so as to produce a p by 3 matrix of
estimates and confidence limits. Used internally in ci.lin and ci.cum. The 1.96 is replaced by the
appropriate quantile from the normal or t-distribution when arguments alpha and/or df are given.

50

ci.lin

ci.pred returns a 3-column matrix with estimates and upper and lower confidence intervals as
columns. This is just a convenience wrapper for predict.glm(obj, se.fit=TRUE) which returns
a rather unhandy structure. The prediction with c.i. is made in the link scale, and by default
transformed by the inverse link, since the most common use for this is for multiplicative Poisson or
binomial models with either log or logit link.

ci.ratio returns the rate-ratio of two independent set of rates given with confidence intervals or
s.e.s. If sel and se2 are given and log. tr=FALSE it is assumed that r1 and r2 are rates and seT
and se2 are standard errors of the log-rates.

Author(s)

Bendix Carstensen, http://bendixcarstensen. com & Michael Hills

See Also

See ci.eta for a simple version only needing coefficients and variance-covariance matrix. See
also ci.cum for a function computing cumulative sums of (functions of) parameter estimates, and
ci.surv for a function computing confidence intervals for survival functions based on smoothed
rates. The example code for matshade has an application of predicting a rate-ratio using a list of
two prediction frames in the ctr.mat argument.

Examples

Bogus data:

<- factor(sample(letters[1:5], 200, replace=TRUE))
<- factor(sample(letters[1:3], 200, replace=TRUE))
<- rnorm(200)

<- 7 + as.integer(f) * 3 + 2 x x + 1.7 * rnorm(200)

< X 0@ —H HF

Fit a simple model:

mm <- Im(y ~x+f +g)

ci.lin(mm)

ci.lin(mm, subset=3:6, diff=TRUE, fnam=FALSE)
ci.lin(mm, subset=3:6, diff=TRUE, fnam=TRUE)
ci.lin(mm, subset="f", diff=TRUE, fnam="f levels:")

non

print(ci.lin(mm, subset="g", diff=TRUE, fnam="gee!:", vcov=TRUE))

Use character defined subset to get ALL contrasts:
ci.lin(mm, subset="f", diff=TRUE)

Suppose the x-effect differs across levels of g:

mi <- update(mm, . ~ . + g:x)

ci.lin(mi)

RR a vs. b by x:

nda <- data.frame(x=-3:3, g="a", f="b")

ndb <- data.frame(x=-3:3, g="b", f="b")

#

ci.lin(mi, list(nda,ndb))

Same result if f column is omitted because "f" columns are identical
ci.lin(mi, list(nda[l,-3],ndb[,-3]1))

However, crashes if knots in spline is supplied, and non-factor omitted

http://bendixcarstensen.com

ci.lin

xk <= -1:1

xi <- ¢(-0.5,0.5)

ww <- rnorm(200)

mi <- update(mm, . ~ . -x + ww + Ns(x,knots=xk) + g:Ns(x,kno
Will crash

try(cbind(nda$x, ci.lin(mi, list(nda,ndb))))

Must specify num vars (not factors) omitted from nda, ndb
cbind(nda$x, ci.lin(mi, list(nda,ndb), xvars="ww"))

A Wald test of whether the g-parameters are @
Wald(mm, subset="g")

ts=xi))

Wald test of whether the three first f-parameters are equal:

(CM <= rbind(c(1,-1,0,0), c(1,0,-1,0)))
Wald(mm, subset="f", ctr.mat=CM)

or alternatively

(CM <= rbind(c(1,-1,0,0), c(0,1,-1,0)))
Wald(mm, subset="f", ctr.mat=CM)

Confidence intervals for ratio of rates

Rates and ci supplied, but only the range (lower and upper
ci.ratio(cbind(10,8,12.5), cbind(5,4,6.25))

ci.ratio(cbind(8,12.5), cbind(4,6.25))

Beware of the offset when making predictions with ci.pred a
Not run:

library(mgcv)

data(mortDK)

m.arg <- glm(dt ~ age , offset=log(risk) , family=poisson,
m.form <- glm(dt ~ age + offset(log(risk)), family=poisson,
a.arg <- gam(dt ~ age , offset=log(risk) , family=poisson,
a.form <- gam(dt ~ age + offset(log(risk)), family=poisson,

+

+

nd <- data.frame(age=60:65, risk=100)
round(ci.pred(m.arg , nd), 4)
round(ci.pred(m.form, nd), 4
round(ci.exp (m.arg , nd),
round(ci.exp (m.form, nd),
round(ci.pred(a.arg , nd),
round(ci.pred(a.form, nd),
round(ci.exp (a.arg , nd),
round(ci.exp (a.form, nd),

B I
N N S S

nd <- data.frame(age=60:
try(ci.pred(m.arg , nd
try(ci.pred(m.form, nd
try(ci.exp (m.arg , nd
try(ci.exp (m.form, nd
try(ci.pred(a.arg , nd

a

a

a

(9]
~—

try(ci.pred(a.form, nd
try(ci.exp (a.arg , nd
try(ci.exp (a.form, nd

N O)
R N 1

End(Not run)

ci) is used

nd ci.exp

data=mortDK)
data=mortDK)
data=mortDK)
data=mortDK)

51

52 ci.pd

The offset may be given as an argument (offset=log(risk))
or as a term (+offset(log)), and depending on whether we are using a
glm or a gam Poisson model and whether we use ci.pred or ci.exp to
predict rates the offset is either used or ignored and either
required or not; the state of affairs can be summarized as:
#
offset

usage required?

function model argument term argument term

ci.pred glm used used yes yes
gam ignored used no yes
#
ci.exp glm ignored ignored no yes
gam ignored ignored no yes

ci.pd Compute confidence limits for a difference of two independent propor-
tions.
Description

The usual formula for the c.i. of at difference of proportions is inaccurate. Newcombe has compared
11 methods and method 10 in his paper looks like a winner. It is implemented here.

Usage
ci.pd(aa, bb=NULL, cc=NULL, dd=NULL,
method = "Nc”,
alpha = 0.05, conf.level=0.95,
digits = 3,
print = TRUE,

detail.labs = FALSE)

Arguments
aa Numeric vector of successes in sample 1. Can also be a matrix or array (see
details).
bb Successes in sample 2.
cc Failures in sample 1.
dd Failures in sample 2.
method Method to use for calculation of confidence interval, see "Details".
alpha Significance level

conf.level Confidence level

ci.pd 53

print Should an account of the two by two table be printed.
digits How many digits should the result be rounded to if printed.

detail.labs Should the computing of probability differences be reported in the labels.

Details

Implements method 10 from Newcombe(1998) (method="Nc") or from Agresti & Caffo(2000)
(method="AC").

aa, bb, cc and dd can be vectors. If aa is a matrix, the elements [1:2,1:2] are used, with successes
aal,1:2]. If aa is a three-way table or array, the elements aa[1:2,1:2,] are used.

Value

A matrix with three columns: probability difference, lower and upper limit. The number of rows
equals the length of the vectors aa, bb, cc and dd or, if aa is a 3-way matrix, dim(aa) [3].

Author(s)

Bendix Carstensen, Esa Laara. http://bendixcarstensen.com

References

RG Newcombe: Interval estimation for the difference between independent proportions. Compari-
son of eleven methods. Statistics in Medicine, 17, pp. 873-890, 1998.

A Agresti & B Caffo: Simple and effective confidence intervals for proportions and differences of
proportions result from adding two successes and two failures. The American Statistician, 54(4),
pp. 280-288, 2000.

See Also

twoby2, binom. test

Examples

(a <- matrix(sample(10:40, 4), 2, 2))

ci.pd(a)

twoby2(t(a))

prop.test(t(a))

(A <- array(sample(10:40, 20), dim=c(2,2,5)))
ci.pd(A)

ci.pd(A, detail.labs=TRUE, digits=3)

http://bendixcarstensen.com

54

clogistic

clogistic

Conditional logistic regression

Description

Estimates a logistic regression model by maximizing the conditional likelihood. The conditional
likelihood calculations are exact, and scale efficiently to strata with large numbers of cases.

Usage

clogistic(formula, strata, data, subset, na.action, init,
model = TRUE, x = FALSE, y = TRUE, contrasts = NULL,
iter.max=20, eps=1e-6, toler.chol = sqrt(.Machine$double.eps))

Arguments

formula
strata
data
subset
na.action
init

model

X’y

contrasts
iter.max

eps

toler.chol

Value

Model formula

Factor describing membership of strata for conditioning

data frame containing the variables in the formula and strata arguments
subset of records to use

missing value handling

initial values

a logical value indicating whether model frame should be included as a compo-
nent of the returned value

logical values indicating whether the response vector and model matrix used in
the fitting process should be returned as components of the returned value.

an optional list. See the contrasts.arg of model.matrix.default
maximum number of iterations

Convergence tolerance. Iteration continues until the relative change in the con-
ditional log likelihood is less than eps. Must be positive.

Tolerance used for detection of a singularity during a Cholesky decomposition
of the variance matrix. This is used to detect redundant predictor variables. Must
be less than eps.

An object of class "clogistic”. This is a list containing the following components:

coefficients

var

the estimates of the log-odds ratio parameters. If the model is over-determined
there will be missing values in the vector corresponding to the redundant columns
in the model matrix.

the variance matrix of the coefficients. Rows and columns corresponding to any
missing coefficients are set to zero.

contr.cum 55

loglik a vector of length 2 containing the log-likelihood with the initial values and with
the final values of the coefficients.

iter number of iterations used.

n number of observations used. Observations may be dropped either because they

are missing, or because they belong to a homogeneous stratum. For more details
on which observations were used, see informative below.

informative if model=TRUE, a logical vector of length equal to the number of rows in the
model frame. This indicates whether an observation is informative. Strata that
are homogeneous with respect to either the outcome variable or the predictor
variables are uninformative, in the sense that they can be removed without mod-
ifying the estimates or standard errors. If mode1=FALSE, this is NULL.

The output will also contain the following, for documentation see the glm object: terms, formula,
call, contrasts, xlevels, and, optionally, x, y, and/or frame.

Author(s)

Martyn Plummer

See Also

glm

Examples

data(bdendo)
clogistic(d ~ cest + dur, strata=set, data=bdendo)

contr.cum Contrast matrices

Description

Return a matrix of contrasts for factor coding.

Usage

contr.cum(n)
contr.diff(n)
contr.2nd(n)
contr.orth(n)

Arguments

n A vector of levels for a factor, or the number of levels.

56 crr.Lexis

Details

These functions are used for creating contrast matrices for use in fitting regression models. The
columns of the resulting matrices contain contrasts which can be used for coding a factor with n
levels.

contr.cum gives a coding corresponding to successive differences between factor levels.

contr.diff gives a coding that correspond to the cumulative sum of the value for each level. This
is not meaningful in a model where the intercept is included, therefore n columns ia always returned.

contr.2nd gives contrasts corresponding to 2nd order differences between factor levels. Returns a
matrix with n-2 columns.

contr.orth gives a matrix with n-2 columns, which are mutually orthogonal and orthogonal to the
matrix cbind(1,1:n)
Value

A matrix with n rows and k columns, with k=n for contr.diff k=n-1 for contr.cum k=n-2 for
contr.2nd and contr.orth.

Author(s)

Bendix Carstensen

See Also

contr.treatment

Examples

contr.cum(6)
contr.2nd(6)
contr.diff(6)
contr.orth(6)

crr.lLexis Fit a competing risks regression model (Fine-Gray model) using a
Lexis object)

Description

Fits a competing risks regression model using a Lexis object assuming that every person enters at
time O and exits at time lex.dur. Thus is only meaningful for Lexis objects with one record per
person, (so far).

Usage
crr.Lexis(obj, mod, quiet=FALSE, ...)

crr.Lexis 57

Arguments
obj A Lexis object; variables in mod are taken from this.
mod Formula, with the Lh.s. a character constant equal to a level of obj$lex.Xst,
and the r.h.s. a model formula interpreted in obj.
quiet Logical indicating whether a brief summary should be printed.
Further arguments passed on to crr.
Details

This function is a simple wrapper for crr, allowing a formula-specification of the model (which
allows specifications of covariates on the fly), and utilizing the structure of Lexis objects to simplify
specification of the outcome. Prints a summary of the levels used as event, competing events and
censoring.

By the structure of the Lexis object it is not necessary to indicate what the censoring code or
competing events are, that is automatically derived from the Lexis object.

Currently only one state is allowed as 1.h.s. (response) in mod.

Value

A crr object (which is a list), with two extra elements in the list, model.Lexis - the model formula
supplied, and transitions - a table of transitions and censorings showing which transition was
analysed and which were taken as competing events.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also

crr, Lexis

Examples

Thorotrats patients, different histological types of liver cancer
Load thorotrast data, and restrict to exposed

data(thoro)

tht <- thoro[thoro$contrast==1,]

Define exitdate as the date of livercancer

tht$dox <- pmin(tht$liverdat, tht$exitdat, na.rm=TRUE)

tht <- subset(tht, dox > injecdat)

Convert to calendar years in dates

tht <- cal.yr(tht)

Set up a Lexis object with three subtypes of liver cancer and death
tht.L <- Lexis(entry = list(per = injecdat,
tfi =0),
exit = list(per = dox),
exit.status = factor(1xhepcc+2*chola+3xhmang+
4x(hepcctcholathmang==0 & exitstat==1),

http://bendixcarstensen.com

58

cutLexis

labels=c("No cancer”,"hepcc”,"chola”, "hmang","Dead")),

data = tht)
summary(tht.L)

Show the transitions
boxes(tht.L, boxpos=list(x=c(20,rep(89,3),30),
y=c(60,90,60,30,10)),
show.BE="nz", scale.R=1000)

Fit a model for the Hepatocellular Carcinoma as outcome

- note that you can create a variable on the fly:

library(cmprsk)

hepcc <- crr.Lexis(tht.L, "hepcc” ~ volume + I(injecdat-1940))
hepcc$model.Lexis

hepcc$transitions

Models for the three other outcomes:

chola <- crr.Lexis(tht.L, "chola” ~ volume + I(injecdat-1940))
hmang <- crr.Lexis(tht.L, "hmang” ~ volume + I(injecdat-1940))
dead <- crr.Lexis(tht.L, "Dead” ~ volume + I(injecdat-1940))

Compare the effects
NOTE: This is not necessarily a joint model for all transitions.
zz <- rbind(ci.exp(hepcc),

ci.exp(chola),

ci.exp(hmang),

ci.exp(dead))
zz <- cbind(zz[c(1,3,5,7) ,1,

zz[c(1,3,5,7)+1,]1)
rownames(zz) <- c("hepcc”,"chola"”,"hmang","dead")
colnames(zz)[c(1,4)] <- rownames(ci.exp(chola))
round(zz, 3)

cutLexis Cut follow-up at a specified date for each person.

Description

Follow-up intervals in a Lexis object are divided into two sub-intervals: one before and one after an
intermediate event. The intermediate event may denote a change of state, in which case the entry

and exit status variables in the split Lexis object are modified.

Usage

cutLexis(data, cut, timescale = 1,
new.state = nlevels(data$lex.Cst)+1,
new.scale = FALSE,
split.states = FALSE,
progressive = FALSE,
precursor.states = transient(data),

cutLexis 59

count = FALSE)
countlLexis(data, cut, timescale =1)

Arguments

data A Lexis object.

cut A numeric vector with the times of the intermediate event. If a time is missing
(NA) then the event is assumed to occur at time Inf. cut can also be a dataframe,
see details.

timescale The timescale that cut refers to. Numeric or character.

new.state The state to which a transition occur at time cut. It may be a single value, which
is then applied to all rows of data, or a vector with a separate value for each row

new.scale Name of the timescale defined as "time since entry to new.state". If TRUE a name

for the new scale is constructed. See details.

split.states Should states that are not precursor states be split according to whether the in-
termediate event has occurred.

progressive a logical flag that determines the changes to exit status. See details.
precursor.states
an optional vector of states to be considered as "less severe" than new.state.
See Details below

count logical indicating whether the countlLexis options should be used. Specify-
ing count=TRUE amounts to calling countLexis, in which case the arguments
new.state, progressive and precursor.states will be ignored.

Details

The cutLexis function allows a number of different ways of specifying the cutpoints and of modi-
fying the status variable.

If the cut argument is a dataframe it must have columns lex.id, cut and new.state. The values
of lex.id must be unique. In this case it is assumed that each row represents a cutpoint (on the
timescale indicated in the argument timescale). This cutpoint will be applied to all records in data
with the corresponding lex.id. This makes it possible to apply cutlLexis to a split Lexis object.

If anew. state argument is supplied, the status variable is only modified at the time of the cut point.
However, it is often useful to modify the status variable after the cutpoint when an important event
occurs. There are three distinct ways of doing this.

If the progressive=TRUE argument is given, then a "progressive" model is assumed, in which the
status can either remain the same or increase during follow-up, but never decrease. This assumes
that the state variables lex.Cst and lex.Xst are either numeric or ordered factors. In this case,
if new. state=X, then any exit status with a value less than X is replaced with X. The Lexis object
must already be progressive, so that there are no rows for which the exit status is less than the entry
status. If lex.Cst and lex.Xst are factors they must be ordered factors if progressive=TRUE is
given.

As an alternative to the progressive argument, an explicit vector of precursor states, that are con-
sidered less severe than the new state, may be given. If new.state=X and precursor.states=c(Y,Z)
then any exit status of Y or Z in the second interval is replaced with X and all other values for the
exit status are retained.

60 cutLexis

The countlLexis function is a variant of cutLexis when the cutpoint marks a recurrent event, and
the status variable is used to count the number of events that have occurred. Times given in cut
represent times of new events. Splitting with countLexis increases the status variable by 1. If the
current status is X and the exit status is Y before cutting, then after cutting the entry status is X, X+1
for the first and second intervals, respectively, and the exit status is X+1, Y+1 respectively. Moreover
the values of the status is increased by 1 for all intervals for all intervals after the cut for the person
in question. Hence, a call to countlLexis is needed for as many times as the person with most
events. But also it is immaterial in what order the cutpoints are entered.

Value

A Lexis object, for which each follow-up interval containing the cutpoint is split in two: one
before and one after the cutpoint. Any record representing follow up after the cutpoint has its value
of lex.Cst updated to the new state. An extra time-scale is added; the time since the event at cut.
This time scale will be NA for any follow-up prior to the intermediate event.

The function tsNA20 will replace all missing values in timescales with 0. This is commonly meeded
when timescales defined as time since entry into an intermediate state are used in modeling. But
you do not want to do that permanently in the cut data frame.

Note

The cutLexis function superficially resembles the splitlLexis function. However, the splitlLexis
function splits on a vector of common cut-points for all rows of the Lexis object, whereas the
cutLexis function splits on a single time point, which may be distinct for each row, modifies the
status variables, adds a new timescale and updates the attribute "time.since". This attribute is a
character vector of the same length as the "time.scales" attribute, whose value is """ if the cor-
responding timescale is defined for any piece of follow-up, and if the corresponding time scale is
defined by say cutLexis(obj,new.state="A",new.scale=TRUE), it has the value "A".

Author(s)

Bendix Carstensen, Steno Diabetes Center, <b@bxc . dk>, Martyn Plummer, <martyn.plummer@r-project.org>

See Also

mcutlLexis, rcutlLexis, addCov.Lexis, splitLexis, Lexis, summary.Lexis, timeSince, boxes.Lexis

Examples

A small artificial example

xx <- Lexis(entry=list(age=c(17,24,33,29),per=c(1920,1933,1930,1929)),
duration=c(23,57,12,15), exit.status=c(1,2,1,2))

XX

cut <- c(33,47,29,50)

cutLexis(xx, cut, new.state=3, precursor=1)

cutlLexis(xx, cut, new.state=3, precursor=2)

cutLexis(xx, cut, new.state=3, precursor=1:2)

The same as the last example

cutLexis(xx, cut, new.state=3)

detrend 61

The same example with a factor status variable

yy <- Lexis(entry = list(age=c(17,24,33,29),per=c(1920,1933,1930,1929)),
duration = c¢(23,57,12,15),
entry.status = factor(rep(”alpha"”,4),
levels=c("alpha”, "beta”, "gamma")),
exit.status = factor(c("alpha”,"beta"”,"alpha”, "beta"),
levels=c("alpha”, "beta"”, "gamma")))

cutLexis(yy,c(33,47,29,50),precursor="alpha”,new.state="gamma")
cutlLexis(yy,c(33,47,29,50),precursor=c("alpha”,"beta"),new.state="aleph")

Using a dataframe as cut argument

rl <- data.frame(lex.id=1:3, cut=c(19,53,26), timescale="age", new.state=3)
rl

cutLexis(xx, rl)

cutlLexis(xx, rl, precursor=1)

cutLexis(xx, rl, precursor=0:2)

It is immaterial in what order splitting and cutting is done
xs <- splitLexis(xx, breaks=seq(0,100,10), time.scale="age")
XS

xsC <- cutlLexis(xs, rl, precursor=0)

xC <- cutLexis(xx, rl, pre=0)

xC
xCs <- splitlLexis(xC, breaks=seq(0,100,10), time.scale="age")
xCs
str(xCs)
detrend Projection of a model matrix on the orthogonal complement of a trend
or curvature.
Description

The columns of a model matrix M is projected on the orthogonal complement to the matrix (1,t),
resp. (1,t,t*2).

Orthogonality is w.r.t. an inner product defined by the positive definite matrix matrix diag(weight).
Non-diagonal matrices defining the inner product is not supported.

Usage

detrend(M, t, weight
decurve(M, t, weight

rep(1, nrow(M)))
rep(1, nrow(M)))

Arguments

M A model matrix.

t The trend defining a subspace. A numerical vector of length nrow(M).

62 diet

weight Weights defining the inner product of vectors x and y as sum(x*w*y). A numeri-
cal vector of length nrow (M), defaults to a vector of 1s. Must be all non-negative.
Details
The functions are intended to be used in construction of particular parametrizations of age-period-
cohort models.
Value
detrend returns full-rank matrix with columns orthogonal to (1,t); decurve returns full-rank
matrix with columns orthogonal to (1,t,t*2).
Author(s)
Bendix Carstensen, Steno Diabetes Center Copenhagen, http://bendixcarstensen.com, with
essential help from Peter Dalgaard.
See Also

projection.ip

diet Diet and heart data

Description

The diet data frame has 337 rows and 14 columns. The data concern a subsample of subjects
drawn from larger cohort studies of the incidence of coronary heart disease (CHD). These subjects
had all completed a 7-day weighed dietary survey while taking part in validation studies of dietary
questionnaire methods. Upon the closure of the MRC Social Medicine Unit, from where these
studies were directed, it was found that 46 CHD events had occurred in this group, thus allowing a
serendipitous study of the relationship between diet and the incidence of CHD.

Format

This data frame contains the following columns:

id: subject identifier, a numeric vector.
doe: date of entry into follow-up study, a Date variable.
dox: date of exit from the follow-up study, a Date variable.
dob: date of birth, a Date variable.
y: number of years at risk, a numeric vector.
fail: status on exit, a numeric vector (codes 1, 3 and 13 represent CHD events)
job: occupation, a factor with levels Driver Conductor Bank worker
month: month of dietary survey, a numeric vector
energy: total energy intake (kCal per day/100), a numeric vector
height: (cm), a numeric vector

http://bendixcarstensen.com

DMconv 63

weight: (kg), a numeric vector
fat: fatintake (10 g/day), a numeric vector
fibre: dietary fibre intake (10 g/day), a numeric vector
energy.grp: high daily energy intake, a factor with levels <=2750 KCal >2750 KCal
chd: CHD event, a numeric vector (1=CHD event, O=no event)

Source

The data are described and used extensively by Clayton and Hills, Statistical Models in Epidemiol-
ogy, Oxford University Press, Oxford:1993. They were rescued from destruction by David Clayton
and reentered from paper printouts.

Examples

data(diet)

Illustrate the follow-up in a Lexis diagram

Lexis.diagram(age=c(30,75), date=c(1965,1990),
entry.date=cal.yr(doe), exit.date=cal.yr(dox), birth.date=cal.yr(dob),
fail=(fail>@), pch.fail=c(NA,16), col.fail=c(NA,"red"), cex.fail=1.0,
data=diet)

DMconv Conversion to diabetes

Description

Data from a randomized intervention study ("Addition") where persons with prediabetic conditions
are followed up for conversion to diabetes (DM). Conversion dates are interval censored. Original
data are not published yet, so id-numbers have been changed and all dates have been randomly
perturbed.

Usage
data(DMconv)

Format
A data frame with 1519 observations on the following 6 variables.

id Person identifier

doe Date of entry, i.e. first visit.

dlw Date last seen well, i.e. last visit without DM.
dfi Date first seen ill, i.e. first visit with DM.

gtol Glucose tolerance. Factor with levels: 1="IFG" (impaired fasting glucose), 2="IGT" (im-
paired glucose tolerance).

grp Randomization. Factor with levels: 1="Intervention", 2="Control".

64 DMepi

Source

Signe Saetre Rasmussen, Steno Diabetes Center. The Addition Study.

Examples

data(DMconv)
str(DMconv)
head(DMconv)

DMepi Epidemiological rates for diabetes in Denmark 19962015

Description

Register based counts and person-years for incidence of diabetes and mortality with and without
diabetes.

Usage

data("DMepi")

Format
A data frame with 4200 observations on the following 8 variables.
sex a factor with levels M, F
Age class, 0-99

Calendar year, 1996-2016

Number of new diagnoses of diabetes among persons without diabetes

nD Person-years among persons without diabetes

A
P
X
D.nD Number of deaths among persons without diabetes
Y.
D.DM Number of deaths among persons with diabetes

Y.

DM Person-years among persons with diabetes

Details

Based on registers of the Danish population. Only included for illustrative purposes. Cannot be
used as scientifically validated data, since small numbers are randomly permuted between units.

DMepi

Examples

data(DMepi)
Total deaths and person-years in the Danish population
ftable(addmargins(xtabs(cbind(Deaths=D.nD+D.DM,
PYrs=Y.nD+Y.DM) ~ P + sex,
data=DMepi),
2),
row.vars = 1)
Deaths and person-years in the population of diabetes patients
round (
ftable(addmargins(xtabs(cbind(Deaths=D.DM,
PYrs=Y.DM) ~ P + sex,
data=DMepi),
2),
row.vars = 1))

Model for age-specific incidence rates;
inc <- glm(X ~ sex + Ns(A, knots=seq(30,80,10)) + P,
offset = log(Y.nD),
family = poisson,
data = DMepi)

Predict for men and women separately in 2010:

ndm <- data.frame(sex="M", A=20:90, P=2010, Y.nD=1000)

ndf <- data.frame(sex="F", A=20:90, P=2010, Y.nD=1000)

prM <- ci.pred(inc, ndm)

prfF <- ci.pred(inc, ndf)

matplot(ndm$A, cbind(prM,prF),
type="1", 1ty=1, lwd=c(3,1,1),
col=rep(c("blue”,"red"),each=3),
log="y", xlab="Age", ylab="DM incidence per 1000 PY")

This is a proportional hazards model - add sex-age interaction
int <- update(inc, . ~ . + sex:Ns(A, knots=seq(30,80,10)))
prM <- ci.pred(int, ndm)
prF <- ci.pred(int, ndf)
matplot(ndm$A, cbind(prM,prF),
type="1", 1lty=1, lwd=c(3,1,1),
col=rep(c("blue”,"red"),each=3),
log="y", xlab="Age", ylab="DM incidence per 1000 PY")

The rate-ratio is teased out using the ci.exp:
RRp <- ci.exp(inc, list(ndm,ndf))
RRi <- ci.exp(int, list(ndm,ndf))

and added to the plot
matlines(ndm$A, cbind(RRi,RRp),
type="1", 1lty=1, lwd=c(3,1,1), col=gray(rep(c(0.3,0.7),each=3))
abline(h=1)
axis(side=4)
mtext("Male/Female IRR"”, side=4, line=2)

66 DMiate

DMlate The Danish National Diabetes Register.

Description

These two datasets each contain a random sample of 10,000 persons from the Danish National
Diabetes Register. DMrand is a random sample from the register, whereas DMlate is a random
sample among those with date of diagnosis after 1.1.1995. All dates are radomly jittered by adding
a U(-7,7) (days).

Usage
data(DMrand)
data(DMlate)
Format

A data frame with 10000 observations on the following 7 variables.

sex Sex, a factor with levels M F

dobth Date of birth

dodm Date of inclusion in the register
dodth Date of death

dooad Date of 2nd prescription of OAD
doins Date of 2nd insulin prescription

dox Date of exit from follow-up.

Details

All dates are given in fractions of years, so 1998.000 corresponds to 1 January 1998 and 1998.997
to 31 December 1998.

All dates are randomly perturbed by a small amount, so no real persons have any of the combinations
of the 6 dates in the dataset. But results derived from the data will be quite close to those that would
be obtained if the entire ‘real’ diabetes register were used.

Source

Danish National Board of Health.

References

B Carstensen, JK Kristensen, P Ottosen and K Borch-Johnsen: The Danish National Diabetes Reg-
ister: Trends in incidence, prevalence and mortality, Diabetologia, 51, pp 2187-2196, 2008.

In partucular see the appendix at the end of the paper.

effx

Examples

data(DMlate)
str(DMlate)

67

dml <- Lexis(entry=list(Per=dodm, Age=dodm-dobth, DMdur=0),
exit=1list(Per=dox),
exit.status=factor(!is.na(dodth),labels=c("DM","Dead")),
data=DMlate)

Cut the follow-up at insulin start, and introduce a new timescale,
and split non-precursor states

system. time(

dmi <- cutlLexis(dml, cut = dml$doins,

pre = "DM",
new.state = "Ins”,
new.scale = "t.Ins",

split.states = TRUE))

summary(dmi)

effx

Function to calculate effects

Description

The function calculates the effects of an exposure on a response, possibly stratified by a stratifying
variable, and/or controlled for one or more confounding variables.

Usage
effx(response, type = "metric”,
fup = NULL,
exposure,
strata = NULL,
control = NULL,
weights = NULL,
eff = NULL,
alpha = 0.05,
base = 1,
digits = 3,
data = NULL)
Arguments
response The response variable - must be numeric or logical. If logical, TRUE is consid-
ered the outcome.
type The type of responsetype - must be one of "metric", "binary", "failure", or
"count"
fup The fup variable contains the follow-up time for a failure response. This must

be numeric.

68 effx

exposure The exposure variable can be numeric or a factor

strata The strata stratifying variable - must be a factor

control The control variable(s) (confounders) - these are passed as a list if there are
more than one.

weights Frequency weights for binary response only

eff How should effects be measured. If response is binomial, the default is "OR"

(odds-ratio) with "RR" (relative risk) as an option. If response is failure, the
default is "RR" (rate-ratio) with "RD" (rate difference) as an option.

base Baseline for the effects of a categorical exposure, either a number or a name of
the level. Defaults to 1
digits Number of significant digits for the effects, default 3
alpha 1 - confidence level
data data refers to the data used to evaluate the function
Details

The function is a wrapper for glm. Effects are calculated as differences in means for a metric
response, odds ratios/relative risks for a binary response, and rate ratios/rate differences for a failure
or count response.

The k-1 effects for a categorical exposure with k levels are relative to a baseline which, by default,
is the first level. The effect of a metric (quantitative) exposure is calculated per unit of exposure.

The exposure variable can be numeric or a factor, but if it is an ordered factor the order will be

ignored.
Value
comp1 Effects of exposure
comp2 Tests of significance
Author(s)

Michael Hills (*1934-Jun-07, +2021-Jan-07)

Examples

library(Epi)

data(births)

births$hyp <- factor(births$hyp,labels=c("normal”, "hyper"))
births$sex <- factor(births$sex,labels=c("M","F"))

bweight is the birth weight of the baby in gms, and is a metric
response (the default)

effect of hypertension on birth weight

effx(bweight, exposure=hyp,data=births)

effect of hypertension on birth weight stratified by sex
effx(bweight,exposure=hyp, strata=sex,data=births)

effx.match 69

effect of hypertension on birth weight controlled for sex
effx(bweight, exposure=hyp,control=sex,data=births)

print(options('na.action'))

effect of gestation time on birth weight
effx(bweight,exposure=gestwks,data=births)

effect of gestation time on birth weight stratified by sex
effx(bweight,exposure=gestwks, strata=sex,data=births)

effect of gestation time on birth weight controlled for sex
effx(bweight, exposure=gestwks, control=sex,data=births)

lowbw is a binary response coded 1 for low birth weight and @ otherwise
effect of hypertension on low birth weight

effx(lowbw, type="binary"”,exposure=hyp,data=births)

effx(lowbw, type="binary"”,exposure=hyp,eff="RR",data=births)

effx.match Function to calculate effects for individually matched case-control
studies

Description

The function calculates the effects of an exposure on a response, possibly stratified by a stratifying
variable, and/or controlled for one or more confounding variables.

Usage

effx.match(response,
exposure,

match,

strata=NULL,
control=NULL,

base=1,
digits=3,
alpha=0.05,
data=NULL)
Arguments
response The response variable - must be numeric
exposure The exposure variable can be numeric or a factor
match The variable which identifies the matched sets
strata The strata stratifying variable - must be a factor
control The control variable(s). These are passed as a list if there are more than one of
them.
base Baseline for the effects of a categorical exposure, default 1

digits Number of significant digits for the effects, default 3

70 entry.Lexis

alpha 1 - confidence level
data data refers to the data used to evaluate the function
Details

Effects are calculated odds ratios. The function is a wrapper for clogit, from the survival package.
The k-1 effects for a categorical exposure with k levels are relative to a baseline which, by default,
is the first level. The effect of a metric (quantitative) exposure is calculated per unit of exposure.
The exposure variable can be numeric or a factor, but if it is an ordered factor the order will be
ignored.

Value

comp1 Effects of exposure

comp2 Tests of significance

Author(s)
Michael Hills

References

www.mbhills.pwp.blueyonder.co.uk

Examples

library(Epi)
library(survival)
data(bdendo)

d is the case-control variable, set is the matching variable.

The variable est is a factor and refers to estrogen use (no,yes)

The variable hyp is a factor with 2 levels and refers to hypertension (no, yes)
effect of est on the odds of being a case

effx.match(d, exposure=est,match=set,data=bdendo)

effect of est on the odds of being a case, stratified by hyp
effx.match(d,exposure=est,match=set,strata=hyp,data=bdendo)

effect of est on the odds of being a case, controlled for hyp

effx.match(d, exposure=est,match=set,control=hyp,data=bdendo)

entry.Lexis Time series and other methods for Lexis objects

Description

Extract the entry time, exit time, status or duration of follow-up from a Lexis object. Classify
states.

entry.Lexis 71

Usage
entry(x, time.scale = NULL, by.id=FALSE)
exit(x, time.scale = NULL, by.id=FALSE)
status(x, at="exit" , by.id=FALSE)
dur(x, by.id=FALSE)
transient(x)
absorbing(x)

preceding(x, states)
before(x, states)
succeeding(x, states)
after(x, states)

Arguments
X an object of class Lexis.
time.scale a string or integer indicating the time scale. If omitted, all times scales are used.
by.id Logical, if TRUE, only one record per unique value of lex. id is returned; either
the first, the last, or for dur, the sum of lex.dur. If TRUE, the returned object
have the lex.id as (row)names attribute.
at string indicating the time point(s) at which status is to be measured. Possible
values are "exit" or "entry".
states Character vector of states.
Value

The entry and exit functions return a vector of entry times and exit times, respectively, on the
requested time scale. If multiple time scales are requested, a matrix is returned.

The status function returns a vector giving the status at "at" (either entry’ or ’exit’) and dur
returns a vector with the lengths of the follow-up intervals.

entry, exit, status and dur return vectors of length nrow(x) if by.id=FALSE; if by.id=TRUE a
vector of length length(unique(lex.id)).

The functions transient and absorbing return character vectors of the transient, resp. absorbing
states in x. These are necessarily disjoint but the union may be a proper subset of levels(x), since
the latter may have levels that are never assumed by either lex.Cst or lex.Xst.

preceding returns a character vector with names of the states of the Lexis object x from which one
of the states in states can be reached directly - the preceding states. before is just a synonym for
preceding.

succeeding returns a character vector with names of the states of the Lexis object x that can be
reached directly from one of the states in states. after is just a synonym for succeeding.

Author(s)

Martyn Plummer & Bendix Carstensen

See Also

Lexis

72 erl

Epi Epi: Functions for manipulation and statistical analysis of epidemio-
logical data

Description

Epi has grown out of the course *Statistical Practise in Epidemiology with R’ http://bendixcarstensen.
com/SPE/.

The major contributions from this course have been the stat.table function for advanced tabula-
tion and summary, and the functions for representation and the Lexis function(s) for manipulation
of multistate data with multiple time scales.

Details

Click on the Index link below the line to access vignettes (tutorial documents) and an alphabetic
list of the functions in Epi.

erl Compute survival functions from rates and expected residual lifetime
in an illness-death model as well as years of life lost to disease.

Description

These functions compute survival functions from a set of mortality and disease incidence rates in
an illness-death model. Expected residual life time can be computed under various scenarios by the
erl function, and areas between survival functions can be computed under various scenarios by the
y11 function. Rates are assumed supplied for equidistant intervals of length int.

Usage
survli(int, mu , age.in = @, A = NULL)
erl1(int, mu , age.in = 0)
surv2(int, muW, muD, lam, age.in = @, A = NULL)
erl(int, muW, muD, lam=NULL, age.in = @, A = NULL,
immune = is.null(lam), yl1=TRUE, note=TRUE)
yl1(int, muW, muD, lam=NULL, age.in = @, A = NULL,
immune = is.null(lam), note=TRUE)
Arguments
int Scalar. Length of intervals that rates refer to.
mu Numeric vector of mortality rates at midpoints of intervals of length int
muW Numeric vector of mortality rates among persons in the "Well" state at midpoints

of intervals of length int. Left endpoint of first interval is age. in.

http://bendixcarstensen.com/SPE/
http://bendixcarstensen.com/SPE/

erl

73
muD Numeric vector of mortality rates among persons in the "Diseased" state at mid-
points of intervals of length int. Left endpoint of first interval is age. in.
lam Numeric vector of disease incidence rates among persons in the "Well" state at
midpoints of intervals of length int. Left endpoint of first interval is age. in.
age.in Scalar indicating the age at the left endpoint of the first interval.
A Numeric vector of conditioning ages for calculation of survival functions.
immune Logical. Should the years of life lost to the disease be computed using assump-

tions that non-diseased individuals are immune to the disease (1am=0) and that
their mortality is yet still muW.

note Logical. Should a warning of silly assumptions be printed?
yll Logical. Should years of life lost be included in the result?
Details

The mortality rates given are supposed to refer to the ages age.in+(i-1/2)*int, i=1,2,3,....

The units in which int is given must correspond to the units in which the rates mu, muW, muD and
lam are given. Thus if int is given in years, the rates must be given in the unit of events per year.

The ages in which the survival curves are computed are from age.in and then at the end of
length(muW) (length(mu)) intervals each of length int.

The age.in argument is merely a device to account for rates only available from a given age. It
has two effects, one is that labeling of the interval endpoint is offset by this quantity, thus starting
at age.in, and the other that the conditioning ages given in the argument A will refer to the ages
defined by this.

The immune argument is FALSE whenever the disease incidence rates are supplied. If set to TRUE,
the years of life lost is computed under the assumption that individuals without the disease at a
given age are immune to the disease in the sense that the disease incidence rate is 0, so transitions
to the diseased state (with presumably higher mortality rates) are assumed not to occur. This is a
slightly peculiar assumption (but presumably the most used in the epidemiological literature) and
the resulting object is therefore given an attribute, NOTE, that point this out.

If however muW is the total mortality in the population (including the diseased) the result is a good
approximation to the correct YLL.

The default of the surv2 function is to take the possibility of disease into account.

Value

surv1 and surv2 return a matrix whose first column is the ages at the ends of the intervals, thus with
length(mu)+1 rows. The following columns are the survival functions (since age. in), and condi-
tional on survival till ages as indicated in A, thus a matrix with length (A)+2 columns. Columns are
labeled with the actual conditioning ages; if A contains values that are not among the endpoints of
the intervals used, the nearest smaller interval border is used as conditioning age, and columns are
named accordingly.

surv1 returns the survival function for a simple model with one type of death, occurring at intensity
mu.

surv?2 returns the survival function for a person in the "Well" state of an illness-death model, taking
into account that the person may move to the "Diseased" state, thus requiring all three transition

74 erl

rates to be specified. The conditional survival functions are conditional on being in the "Well" state
at ages given in A.

erl1 returns a three column matrix with columns age, surv (survival function) and erl (expected
residual life time) with 1length(mu)+1 rows.

erl returns a two column matrix, columns labeled "Well" and "Dis", and with row-labels A. The
entries are the expected residual life times given survival to A. If y11=TRUE the difference between
the columns is added as a third column, labeled "YLL".

Author(s)

Bendix Carstensen, <b@bxc . dk>

See Also

ci.cum

Examples

library(Epi)
data(DMlate)
Naive Lexis object
Lx <- Lexis(entry = list(age = dodm-dobth),
exit = list(age = dox -dobth),
exit.status = factor(!is.na(dodth), labels=c("DM","Dead"”)),
data = DMlate)
Cut follow-up at insulin inception
Lc <- cutlLexis(Lx, cut = Lx$doins-Lx$dob,
new.state = "DM/ins",
precursor.states = "DM")
summary(Lc)
Split in small age intervals
Sc <- splitlLexis(Lc, breaks=seq(0,120,2))
summary(Sc)

Overview of object
boxes(Sc, boxpos=TRUE, show.BE=TRUE, scale.R=100)

Knots for splines
a.kn <- 2:9%10

Mortality among DM
mW <- glm(lex.Xst=="Dead" ~ Ns(age, knots=a.kn),
offset = log(lex.dur),
family = poisson,
data = subset(Sc,lex.Cst=="DM"))

Mortality among insulin treated
ml <- update(mW, data = subset(Sc,lex.Cst=="DM/ins"))

Total motality
mT <- update(mW, data = Sc)

ewrates 75

Incidence of insulin inception
1T <- update(mW, lex.Xst=="DM/ins" ~ .)

From these we can now derive the fitted rates in intervals of 1 year's
length. In real applications you would use much smaller interval like
1 month:

int <- 1/12

int <- 1

Prediction frame to return rates in units of cases per 1 year

- we start at age 40 since rates of insulin inception are largely
indeterminate before age 40

nd <- data.frame(age = seq(40+int, 110, int) - int/2,

lex.dur = 1)
muW <- predict(mW, newdata = nd, type = "response”)
muD <- predict(mI, newdata = nd, type = "response”)
lam <- predict(1I, newdata = nd, type = "response”)

Compute the survival function, and the conditional from ages 50 resp. 70
s1 <- surv1(int, muD, age.in=40, A=c(50,70))
round(s1, 3)

s2 <- surv2(int, muW, muD, lam, age.in=40, A=c(50,70))
round(s2, 3)

How much is YLL overrated by ignoring insulin incidence?

round(YLL <- cbind(

yl1(int, muW, muD, lam, A = 41:90, age.in = 40),

yl1(int, muW, muD, lam, A = 41:90, age.in = 40, immune=TRUE)), 2)[seq(1,51,10),]

par(mar=c(3,3,1,1), mgp=c(3,1,0)/1.6, bty="n", las=1)
matplot(40:90, YLL,

type="1", lty=1, 1lwd=3,

ylim=c(0,10), yaxs="i", xlab="Age")

ewrates Rates of lung and nasal cancer mortality, and total mortality.

Description

England and Wales mortality rates from lung cancer, nasal cancer, and all causes 1936 - 1980. The
1936 rates are repeated as 1931 rates in order to accommodate follow up for the nickel study.

Usage

data(ewrates)

76 expand.data

Format

A data frame with 150 observations on the following 5 variables:

id: Subject identifier (numeric)
year Calendar period, 1931: 1931-35, 1936: 193640, ...
age Ageclass: 10: 10-14, 15:15-19, ...
lung Lung cancer mortality rate per 1,000,000 py.
nasal Nasal cancer mortality rate per 1,000,000 py.
other All cause mortality rate per 1,000,000 py.

Source

From Breslow and Day, Vol II, Appendix IX.

Examples
data(ewrates)
str(ewrates)
expand.data Function to expand data for regression analysis of interval censored
data.
Description

This is a utility function.

The original records with first.well, last.well and first.ill are expanded to multiple records;
several for each interval where the person is known to be well and one where the person is known to
fail. At the same time columns for the covariates needed to estimate rates and the response variable
are generated.

Usage

expand.data(fu, formula, breaks, data)

Arguments
fu A 3-column matrix with first.well, last.well and first.ill in each row.
formula Model fromula, used to derive the model matrix.
breaks Defines the intervals in which the baseline rate is assumed constant. All follow-

up before the first and after the last break is discarded.

data Datafrem in which fu and formula is interpreted.

fit.add 77

Value

Returns a list with three components

rates.frame Dataframe of covariates for estimation of the baseline rates — one per interval
defined by breaks.
cov. frame Dataframe for estimation of the covariate effects. A data-framed version of the

designmatrix from formula.

y Response vector.

Author(s)

Martyn Plummer, <martyn.plummer@r-project.org>

References
B Carstensen: Regression models for interval censored survival data: application to HIV infection
in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

See Also

Icens fit.mult fit.add

fit.add Fit an additive excess risk model to interval censored data.

Description

Utility function.

The model fitted assumes a piecewise constant intensity for the baseline, and that the covariates act
additively on the rate scale.

Usage

fit.add(y, rates.frame, cov.frame, start)

Arguments
y Binary vector of outcomes
rates.frame Dataframe expanded from the original data by expand.data, cooresponding to
covariates for the rate parameters.
cov.frame do., but covariates corresponding to the formula argument of Icens
start Starting values for the rate parameters. If not supplied, then starting values are

generated.

78 fit.baseline

Value
A list with one component:

rates A glm object from a binomial model with log-link function.

Author(s)

Martyn Plummer, <martyn.plummer@r-project.org>

References

B Carstensen: Regression models for interval censored survival data: application to HIV infection
in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics
in Medicine, 15(3):283-292, 1996.

See Also

Icens fit.mult

Examples

data(HIV.dk)

fit.baseline Fit a piecewise contsnt intesity model for interval censored data.

Description

Utility function

Fits a binomial model with logaritmic link, with y as outcome and covariates in rates. frame to
estimate rates in the inttervals between breaks.

Usage

fit.baseline(y, rates.frame, start)

Arguments
y Binary vector of outcomes
rates.frame Dataframe expanded from the original data by expand.data
start Starting values for the rate parameters. If not supplied, then starting values are
generated.
Value

A glm object, with binomial error and logaritmic link.

fit. mult 79
Author(s)
Martyn Plummer, <martyn.plummer@r-project.org>

See Also

fit.add fit.mult

fit.mult Fits a multiplicative relative risk model to interval censored data.

Description

Utility function.

The model fitted assumes a piecewise constant baseline rate in intervals specified by the argument
breaks, and a multiplicative relative risk function.

Usage

fit.mult(y, rates.frame, cov.frame, start)

Arguments
y Binary vector of outcomes
rates.frame Dataframe expanded from the original data by expand.data, cooresponding to
covariates for the rate parameters.
cov.frame do., but covariates corresponding to the formula argument of Icens
start Starting values for the rate parameters. If not supplied, then starting values are
generated.
Details

The model is fitted by alternating between two generalized linear models where one estimates the
underlying rates in the intervals, and the other estimates the log-relative risks.

Value

A list with three components:

rates A glm object from a binomial model with log-link, estimating the baseline rates.
cov A glm object from a binomial model with complementary log-log link, estimat-
ing the log-rate-ratios
niter Nuber of iterations, a scalar
Author(s)

Martyn Plummer, <martyn.plummer@r-project.org>, Bendix Carstensen, <b@bxc.dk>

80 float

References

B Carstensen: Regression models for interval censored survival data: application to HIV infection
in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics
in Medicine, 15(3):283-292, 1996.

See Also

Icens fit.add

Examples

data(HIV.dk)

float Calculate floated variances

Description

Given a fitted model object, the float() function calculates floating variances (a.k.a. quasi-
variances) for a given factor in the model.

Usage
float(object, factor, iter.max=50, ...)
Arguments
object a fitted model object.
factor character string giving the name of the factor of interest. If this is not given, the
first factor in the model is used.
iter.max Maximum number of iterations for EM algorithm.
Optional arguments passed to the vcov () method for the fitted model object.
Details

The float () function implements the "floating absolute risk" proposal of Easton, Peto and Babiker
(1992). This is an alternative way of presenting parameter estimates for factors in regression mod-
els, which avoids some of the difficulties of treatment contrasts. It was originally designed for
epidemiological studies of relative risk, but the idea is widely applicable.

Treatment contrasts are not orthogonal. Consequently, the variances of treatment contrast estimates
may be inflated by a poor choice of reference level, and the correlations between them may also
be high. The float() function associates each level of the factor with a "floating" variance (or
quasi-variance), including the reference level. Floating variances are not real variances, but they
can be used to calculate the variance error of contrast by treating each level as independent.

float 81

Plummer (2003) showed that floating variances can be derived from a covariance structure model
applied to the variance-covariance matrix of the contrast estimates. This model can be fitted by min-
imizing the Kullback-Leibler information divergence between the true distribution of the parameter
estimates and the simplified distribution given by the covariance structure model. Fitting is done
using the EM algorithm.

In order to check the goodness-of-fit of the floating variance model, the float () function compares
the standard errors predicted by the model with the standard errors derived from the true variance-
covariance matrix of the parameter contrasts. The maximum and minimum ratios between true and
model-based standard errors are calculated over all possible contrasts. These should be within 5
percent, or the use of the floating variances may lead to invalid confidence intervals.

Value

An object of class floated. This is a list with the following components

coef A vector of coefficients. These are the same as the treatment contrasts but the
reference level is present with coefficient 0.

var A vector of floating (or quasi-) variances
limits The bounds on the accuracy of standard errors over all possible contrasts
Note

Menezes(1999) and Firth and Menezes (2004) take a slightly different approach to this problem,
using a pseudo-likelihood approach to fit the quasi-variance model. Their work is implemented in
the package qvcalc.

Author(s)

Martyn Plummer

References

Easton DF, Peto J and Babiker GAG (1991) Floating absolute risk: An alternative to relative risk in
survival and case control analysis avoiding an arbitrary reference group. Statistics in Medicine, 10,
1025-1035.

Firth D and Mezezes RX (2004) Quasi-variances. Biometrika 91, 65-80.

Menezes RX(1999) More useful standard errors for group and factor effects in generalized linear
models. D.Phil. Thesis, Department of Statistics, University of Oxford.

Plummer M (2003) Improved estimates of floating absolute risk, Statistics in Medicine, 23, 93-104.

See Also

ftrend, qvcalc

82 foreign.Lexis

foreign.Lexis Create a data structures suitable for use with packages mstate or etm.

Description

The mstate package requires input in the form of a stacked dataset with specific variable names.
This is provided by msdata.Lexis. The resulting dataframe contains the same information as the
result of a call to stack.Lexis.

The etm package requires input (almost) in the form of a Lexis object, but with specific column
names etc. This is provided by etm.Lexis.

Usage
msdata(obj, ...)
S3 method for class 'Lexis'
msdata(obj,
time.scale = timeScales(obj)[1],
|
S3 method for class 'Lexis'
etm(data,
time.scale = timeScales(data)[1],
cens.name = "cens”,
s =0,
t = "last”,
covariance = TRUE,
delta.na = TRUE,
Arguments
obj A Lexis object.
data A Lexis object.
time.scale Name or number of timescale in the Lexis object.
cens.name Name of the code for censoring used by etm. It is only necessary to change this
if one of the states in the Lexis object has name "cens".
s Passed on to etm.
t Passed on to etm.
covariance Passed on to etm.
delta.na Passed on to etm.

Further arguments.

ftrend 83

Value

msdata.Lexis returns a dataframe with the Lexis specific variables stripped, and with the follow-
ing added: id, Tstart, Tstop, from, to, trans, status, which are used in the mstate package.

etm.Lexis transforms the Lexis object into a dataframe suitable for analysis by the function etm
from the etm package, and actually calls this function, so returns an object of class etm.

Author(s)

Bendix Carstensen, <b@bxc.dk>, http://bendixcarstensen.com

See Also

stack.Lexis, msprep, etm

Examples

data(DMlate)
str(DMlate)
dml <- Lexis(entry = list(Per=dodm,Age=dodm-dobth,DMdur=0),
exit = list(Per=dox),
exit.status = factor(!is.na(dodth),labels=c("DM","Dead")),
data = DMlate[1:1000,])
dmi <- cutlLexis(dml, cut=dml$doins, new.state="Ins", pre="DM")
summary(dmi)

Use the interface to the mstate package

if(require(mstate))

{

ms.dmi <- msdata.Lexis(dmi)

Check that all the transitions and person-years got across.

with(ms.dmi, rbind(table(status,trans),
tapply(Tstop-Tstart,trans,sum)))

3

Use the etm package directly with a Lexis object
if(require(etm))

{

dmi <- subset(dmi,lex.id<1000)

etm.D <- etm.Lexis(dmi, time.scale=3)

str(etm.D)
plot(etm.D, col=rainbow(5), lwd=2, 1ty=1, xlab="DM duration”)
}
ftrend Fit a floating trend to a factor in generalized linear model
Description

Fits a "floating trend" model to the given factor in a glm in a generalized linear model by centering
covariates.

http://bendixcarstensen.com

84 ftrend

Usage
ftrend(object, ...)
Arguments
object fitted 1m or glm object. The model must not have an intercept term
arguments to the nlm function
Details

ftrend() calculates "floating trend" estimates for factors in generalized linear models. This is an
alternative to treatment contrasts suggested by Greenland et al. (1999). If a regression model is
fitted with no intercept term, then contrasts are not used for the first factor in the model. Instead,
there is one parameter for each level of this factor. However, the interpretation of these parameters,
and their variance-covariance matrix, depends on the numerical coding used for the covariates. If
an arbitrary constant is added to the covariate values, then the variance matrix is changed.

The ftrend() function takes the fitted model and works out an optimal constant to add to the co-
variate values so that the covariance matrix is approximately diagonal. The parameter estimates can
then be treated as approximately independent, thus simplifying their presentation. This is particu-
larly useful for graphical display of dose-response relationships (hence the name).

Greenland et al. (1999) originally suggested centring the covariates so that their weighted mean,
using the fitted weights from the model, is zero. This heuristic criterion is improved upon by
ftrend() which uses the same minimum information divergence criterion as used by Plummer
(2003) for floating variance calculations. ftrend() calls nlm() to do the minimization and will
pass optional arguments to control it.

Value

A list with the following components

coef coefficients for model with adjusted covariates.
vcov Variance-covariance matrix of adjusted coefficients.
Note

The "floating trend" method is an alternative to the "floating absolute risk" method, which is imple-
mented in the function float().
Author(s)

Martyn Plummer

References

Greenland S, Michels KB, Robins JM, Poole C and Willet WC (1999) Presenting statistical uncer-
tainty in trends and dose-response relations, American Journal of Epidemiology, 149, 1077-1086.

gen.exp 85

See Also
float
gen.exp Generate covariates for drug-exposure follow-up from drug purchase
records.
Description

From records of drug purchase and possibly known treatment intensity, the time since first drug use
and cumulative dose at prespecified times is computed. Optionally, lagged exposures are computed
too, i.e. cumulative exposure a prespecified time ago.

Usage

gen.exp(purchase, id="id"”, dop="dop”, amt="amt", dpt="dpt",
fu, doe="doe", dox="dox",
breaks,
use.dpt = (dpt %in% names(purchase)),
push.max = Inf,
rm.dose = FALSE,
lags = NULL,
lag.dec = 1,
lag.pre = "lag.",
pred.win = Inf)

Arguments

purchase Data frame with columns id-person id, dop - date of purchase, amt - amount
purchased, and optionally dpt - (dose per time) ("defined daily dose", DDD,
that is), how much is assumed to be ingested per unit time. The units used for
dpt is assumed to be units of amt per units of dop.

id Character. Name of the id variable in the data frame.

dop Character. Name of the date of purchase variable in the data frame.

amt Character. Name of the amount purchased variable in the data frame.

dpt Character. Name of the dose-per-time variable in the data frame.

fu Data frame with follow-up period for each person, the person id variable must
have the same name as in the purchase data frame.

doe Character. Name of the date of entry variable.

dox Character. Name of the date of exit variable.

breaks Numerical vector of dates at which the time since first exposure, cumulative

dose etc. are computed.

use.dpt Logical: should we use information on dose per time.

86

gen.exp

push.max Numerical. How much can purchases maximally be pushed forward in time.
See details.

rm.dose Logical. Should the dose from omitted period of exposure (due to the setting of

push.max) be ignored. If FALSE, the cumulative dose will be the cumulation of
the actually purchased amounts, regardless of how far the inception dates have

been pushed.

lags Numerical vector of lag-times used in computing lagged cumulative doses.

lag.dec How many decimals to use in the construction of names for the lagged exposure
variables

lag.pre Character string used for prefixing names of lagged exposure variables. Aimed
to facilitate the use of gen.exp for different drugs with the aim of merging
information.

pred.win The length of the window used for constructing the average dose per time used to

compute the duration of the last purchase. Only used when use . dpt=FALSE. The
default value Inf corresponds to using the time between first and last purchase
of drug as the interval for computing average consumption per time, and thus
the termination of use.

Details

The intention of this function is to generate covariates for a particular drug for the entire follow-
up of each person. The reason that the follow-up prior to first drug purchase and post-exposure is
included is that the covariates must be defined for all follow-up for each person in order to be useful
for analysis of disease outcomes.

The functionality is described in terms of calendar time as underlying time scale, because this will
normally be the time scale for drug purchases and for entry and exit for persons. In principle the
variables termed as dates might equally well refer to say the age scale, but this would then have to
be true both for the purchase data, the follow-up data and the breaks argument.

Drug purchase records (in purchase) are used to construct measures of drug exposure at prespec-
ified timepoints (in breaks) in follow-up intervals (in fu). Each person may have more than one
follow-up interval. They should be disjoint, but this is not checked.

If use.dpt is TRUE then the dose per time information is used to compute the exposure interval
associated with each purchase. Exposure intervals are stacked, that is each interval is put after any
previous. This means that the start of exposure to a given purchase can be pushed into the future.
The parameter push.max indicates the maximally tolerated push. If this is reached by a person, the
assumption is that some of the purchased drug may not be counted in the exposure calculations —
see rm.dose.

The dpt can either be a constant, basically translating each purchased amount into exposure time
the same way for all persons, or it can be a vector with different treatment intensities for each
purchase. In any case the cumulative dose is computed taking dpt into account, unless rm.dose
is FALSE in which case the actual purchased amount is cumulated. The latter is slightly counter-
intuitive because we are using the dpt to push the intervals, and then disregard it when computing
the cumulative dose. The counter argument is that if the limit push.max is reached, the actual
dosage may be larger than indicated the dpt, and is essentially what this allows for.

If use.dpt is FALSE then the exposure from one purchase is assumed to stretch over the time to
the next purchase, so we are effectively allowing different dosing rates (dose per time) between

gen.exp 87

purchases. Formally this approach conditions on the future, because the rate of consumption (the
accumulation of cumulative exposure) is computed based on knowledge of when next purchase is
made. Moreover, with this approach, periods of non-exposure does not exist, except after the last
purchase where the future consumption rate is taken to be the average over the period of use (or a
period of length pred.win), and hence defines a date of cessation of drug.

Finally, if use.dpt is FALSE, at least two purchase records are required to compute the measures.
Therefore persons with only one drug purchase record are ignored in calculations.

Value

A data frame with one record per person and follow-up date (breaks). Date of entry and date of exit
are included too; but only follow-up in the intersetion of range (breaks) and range (fudoe, fudox)
is output.

id person id.

dof date of follow up, i.e. start of interval. Apart from possibly the first interval for each person,
this will assume values in the set of the values in breaks. All other variables refer to status as
of this date.

dur the length (duration) of interval.
tfi time from first initiation of drug.

of f Logical, indicating whether the person is of f drug. So it is FALSE if the person is exposed at
dof.

doff date of latest transition to of f drug. Note that tis defined also at dates after drug exposure has
been resumed.

tfc time from latest cessation of drug.
ctim cumulative time on the drug.
cdos cumulative dose.

ldos suffixed with one value per element in lags, the latter giving the cumulative doses lags
before dof.

Author(s)

Bendix Carstensen, <b@bxc.dk>. The development of this function was supported partly through a
grant from the EFSD (European Foundation for the Study of Diabetes)

See Also

Lexis, cutLexis, mcutLexis, addCov.Lexis

Examples
Example data for drug purchases in 3 persons --- dates (dop) are
measured in years, amount purchased (amt) in no. pills and dose per
time (dpt) consequently given in units of pills/year. Note we also
include a person (id=4) with one purchase record only.
n<-c(10, 18, 8, 1)

hole <- rep(@,n[2])

88

hole[10] <- 2 # to create a hole of 2 years in purchase dates

dates of drug purchase

dop <- c(1995.278+cumsum(sample(1:4/10,n[1],replace=TRUE)),
1992.35T+cumsum(sample(1:4/10,n[2],replace=TRUE)+hole),
1997.320+cumsum(sample(1:4/10,n[3],replace=TRUE)),
1996.470)

purchased amounts mesured in no. pills

amt <- sample(1:3%50 , sum(n), replace=TRUE)

prescribed dosage therefore necessarily as pills per year

dpt <- sample(4:1%365, sum(n), replace=TRUE)

collect to purchase data frame

dfr <- data.frame(id = rep(1:4,n),

dop,
amt = amt,
dpt = dpt)

head(dfr, 3)

a simple dataframe for follow-up periods for these 4 persons
fu <- data.frame(id = 1:4,

doe = ¢(1995,1992,1996,1997)+1:4/4,

dox = c(2001,2003,2002,2010)+1:4/5)
fu

Note that the following use of gen.exp relies on the fact that the

purchase dataframe dfr has variable names "id", "dop”, "amt” and
"dpt"" and the follow-up data frame fu has variable names "id",
"doe"” and "dox"

1: using the dosage information
dposx <- gen.exp(dfr,
fu = fu,
use.dpt = TRUE,
breaks = seq(1990,2015,0.5),
lags = 2:4/4,

lag.pre = "1_")

format(dposx, digits=5)

2: ignoring the dosage information,

hence person 4 with only one purchase is omitted
xposx <- gen.exp(dfr,
fu = fu,
use.dpt = FALSE,
breaks = seq(1990,2015,0.5),

lags = 2:3/5)
format(xposx, digits=5)

It is possible to have disjoint follow-up periods for the same person:

fu <- fulc(1,2,2,3),]
fu$dox[2] <- 1996.2
fu$doe[3] <- 1998.3
fu

Note that drug purchase information for the period not at risk *is* used

gen.exp

gmortDK 89

dposx <- gen.exp(dfr,
fu = fu,
use.dpt = TRUE,
breaks = seq(1990,2015,0.1),
lags = 2:4/4)
format(dposx, digits=5)

gmortDK Population mortality rates for Denmark in 5-years age groups.

Description

The gmortDK data frame has 418 rows and 21 columns.

Format

This data frame contains the following columns:

agr: Age group, 0:0—4, 5:5-9,..., 90:90+.
per: Calendar period, 38: 1938-42, 43: 194347, ..., 88:1988-92.
sex: Sex, 1: male, 2: female.
risk: Number of person-years in the Danish population.
dt: Number of deaths.
rt: Overall mortality rate in cases per 1000 person-years, i.e. rt=1000xdt/risk
Cause-specific mortality rates in cases per 1000 person-years:
r1: Infections
r2: Cancer.
r3: Tumors, benign, unspecific nature.
r4: Endocrine, metabolic.
r5: Blood.
r6: Nervous system, psychiatric.
r7: Cerebrovascular.
r8: Cardiac.
r9: Respiratory diseases, excl. cancer.
r10: Liver, excl. cancer.
r11: Digestive, other.
r12: Genitourinary.
r13: Ill-defined symptoms.
r14: All other, natural.
r15: Violent.

Source

Statistics Denmark, National board of health provided original data. Michael Andersson grouped
the causes of death.

90 harm

See Also

thoro, mortDK

Examples

data(gmortDK)

harm Create a basis of harmonic functions.

Description

Returns a matrix of harmonic functions usable for modeling periodic effects

Usage

harm(x, ord=1, per=1, verbose=FALSE)

Arguments
X A numeric variable.
ord Integer, the order of the harmonic.
per Numeric, the length of the period on the x scale.
verbose Logical: shall I tell what I do with dates?
Details

Columns are constructed under the assumption that the periodic function has period per on the x
scale. Thus, the first columns is defined as sin(2*pixx/per), cos(2*pixx/per), sin(4*pixx/per)
etc.

Since sin and cos are periodic functions there is no requirement that x be in any particular range.

Value

A matrix with nrow(x) rows and 2*deg columns and columnnames sin1, cos1, sin2, cos2 etc.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

Examples

x <- seq(-1,1,0.01)
head(harm(x,ord=2))
matplot(x, harm(x,ord=2), type="1", 1lty=1, lwd=3)

http://bendixcarstensen.com

hivDK 91

hivDK hivDK: seroconversion in a cohort of Danish men

Description

Data from a survey of HIV-positivity of a cohort of Danish men followed by regular tests from 1983
to 1989.

Usage
data(hivDK)

Format

A data frame with 297 observations on the following 7 variables.

id ID of the person

entry Date of entry to the study. Date variable.

well Date last seen seronegative. Date variable.
ill Date first seen seroconverted. Date variable.
bth Year of birth minus 1950.

pyr Annual number of sexual partners.

us Indicator of wheter the person has visited the USA.

Source

Mads Melbye, Statens Seruminstitut.

References

Becker N.G. and Melbye M.: Use of a log-linear model to compute the empirical survival curve
from interval-censored data, with application to data on tests for HIV-positivity, Australian Journal
of Statistics, 33, 125-133, 1990.

Melbye M., Biggar R.J., Ebbesen P., Sarngadharan M.G., Weiss S.H., Gallo R.C. and Blattner W.A..:
Seroepidemiology of HTLV-III antibody in Danish homosexual men: prevalence, transmission and
disease outcome. British Medical Journal, 289, 573-575, 1984.

Examples

data(hivDK)
str(hivDK)

92 Icens

Icens Fits a regression model to interval censored data.

Description

The models fitted assumes a piecewise constant baseline rate in intervals specified by the argument
breaks, and for the covariates either a multiplicative relative risk function (default) or an additive
excess risk function.

Usage

Icens(first.well, last.well, first.ill,
formula, model.type = c("MRR", "AER"), breaks,
boot = FALSE, alpha = 0.05, keep.sample = FALSE,

data)

S3 method for class 'Icens'

summary(object, scale =1, ...)

S3 method for class 'Icens'

print(x, scale = 1, digits = 4, ...)

Arguments

first.well Time of entry to the study, i.e. the time first seen without event. Numerical
vector.

last.well Time last seen without event. Numerical vector.

first.ill Time first seen with event. Numerical vector.

formula Model formula for the log relative risk.

model. type Which model should be fitted.

breaks Breakpoints between intervals in which the underlying timescale is assumed
constant. Any observation outside the range of breaks is discarded.

boot Should bootstrap be performed to produce confidence intervals for parameters.
If a number is given this will be the number of bootsrap samples. The default is
1000.

alpha 1 minus the confidence level.

keep.sample Should the bootstrap sample of the parameter values be returned?

data Data frame in which the times and formula are interpreted.

object an Icens object.

X an Icens object.

scale scaling factor for rates.

digits how many digits is used for printing results.

Other parameters passed on.

Icens 93

Details

The model is fitted by calling either fit.mult or fit.add.

Value

An object of class "Icens”: a list with three components:

rates A glm object from a binomial model with log-link, estimating the baseline rates,
and the excess risk if "AER" is specfied.

cov A glm object from a binomial model with complementary log-log link, estimat-
ing the log-rate-ratios. Only if "MRR" is specfied.

niter Nuber of iterations, a scalar

boot.ci If boot=TRUE, a 3-column matrix with estimates and 1-alpha confidence inter-

vals for the parameters in the model.

sample A matrix of the parameterestimates from the bootstrapping. Rows refer to pa-
rameters, columns to bootstrap samples.

Author(s)

Martyn Plummer, <martyn.plummer@r-project.org>, Bendix Carstensen, <b@bxc.dk>

References

B Carstensen: Regression models for interval censored survival data: application to HIV infection
in Danish homosexual men. Statistics in Medicine, 15(20):2177-2189, 1996.

CP Farrington: Interval censored survival data: a generalized linear modelling approach. Statistics
in Medicine, 15(3):283-292, 1996.

See Also

fit.add fit.mult

Examples

data(hivDK)

Convert the dates to fractional years so that rates are
expressed in cases per year

for(i in 2:4) hivDK[,i] <- cal.yr(hivDK[,i])

m.RR <- Icens(entry, well, ill,
model="MRR", formula=~pyr+us, breaks=seq(1980,1990,5),
data=hivDK)

Currently the MRR model returns a list with 2 glm objects.

round(ci.lin(m.RR$rates), 4)

round(ci.lin(m.RR$cov, Exp=TRUE), 4)

There is actually a print method:

print(m.RR)

m.ER <- Icens(entry, well, ill,

94 in.span

model="AER", formula=~pyr+us, breaks=seq(1980,1990,5),
data=hivDK)

There is actually a print method:

print(m.ER)

in.span Is x in the column span of matrix A and what columns are linearly
dependent?

Description

The function in.span checks if the vector x (or columns of the matrix x) is in the column span
of the matrix A. If desired, it returns the coefficient matrix B so that AB=x. The function thinCol
removes linearly dependent columns an returns a matrix of full rank.

Usage
in.span(A,
X’
coef = FALSE,
tol = 1e-08)

inSpan(A, x, coef=FALSE, tol=1e-08)
id.span(A, B, tol=1e-08)

idSpan(A, B, tol=1e-08)

thinCol(A, tol = 1e-06, col.num = FALSE)

Arguments
A A matrix.
B A matrix.
X A vector or matrix. length(x) (or nrow(x)) must be equal to nrow(A).
coef Logical. Should the coefficient matrix (k) be returned, so that Ak=x?
tol Tolerance for identity of matrices in check (in.span) or QR decomposition
(thinCol)
col.num Logical. Should the positions of dependent columns be returned instead of the
full-rank matrix?
Details

thinCol is mainly a workhorse in detrend, but made available because of its general usefulness.
in.span and inSpan are just different names for the same to accommodate different naming schools.

in.span (inSpan) is handy in checking whether different parametrizations of a model are identical
in the sense of spanning the same linear space. Equivalent to checking whether fitted values under
different parametrizations are identical, but has the further use of checking if subspaces of models
are equivalent. The function simply checks if the regression of (columns of) x on the columns of A
produces residuals that are all 0.

id.span (equivalent to idSpan) checks whether two matrices have the same column span.

in.span 95

Value
in.span returns a logical: is x is in span(A)? If coef=TRUE it returns a matrix k so that Ak=x. k is
not necessarily unique (A may not have full rank).
id.span returns a logical: is span(A) the same as span(B)?

thinCol returns a matrix of full rank, formed from A by deleting columns linearly dependent on
other. If col.num=TRUE (one possible set of) positions of columns forming a full rank basis for the
column space of A is returned.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com with essential help from Lars Jorge Diaz and
Peter Dalgaard.

See Also
det
Examples
Matrices and vectors, x in span(A), z (hopefully) not
A <- matrix(round(rnorm(15)*20),5,3)
B <- matrix(round(rnorm(15)*20),5,3)
B <- cbind(B, B%*%c(3,4,2))
X <= A %*x% c(3,4,2)
z <- 5:9

how they look
data.frame(A=A, x=x, z=z, B=B)

vectors in span(A)?
in.span(A,x)
in.span(x,A)
in.span(A, x, coef=TRUE)

in.span(A,z)
in.span(A,z,coef=TRUE)

Do matrices span the same space ?
in.span(A, B)
in.span(B, A)

B is not in span of a subspace of B columns, but vice versa
(M <= matrix(rnorm(8)*7, 4, 2))

in.span(B%*x%M, B)

in.span(B, B%*%M)

id.span(B, B%*%M)

But not unique for singular matrices:
(xx <- in.span(B, B%*%M, coef=TRUE))
cbind(B%*%M, B%*%xx)

cbind(xx, M)

http://bendixcarstensen.com

96

Easier for full rank matrices:

(K <= matrix(rnorm(9)*7, 3, 3))
in.span(A%*%K, A)

in.span(A, A%*%K)

id.span(A, A%*%K)

in.span(A, A%*%K,

coef=TRUE)

LCa.fit

LCa.fit

Fit Lee-Carter-type models for rates to arbitrarily shaped observa-
tions of rates in a Lexis diagram.

Description

The Lee-Carter model is originally defined as a model for rates observed in A-sets (age by period)
of a Lexis diagram, as log(rate(x,t)) = a(x) + b(x)k(t), using one parameter per age(x) and period(t).
This function uses natural splines for a(), b() and k(), placing knots for each effect such that the
number of events is the same between knots.

Usage

LCa.fit(data, A,

model =
a.ref,
pi.ref
ci.ref
p.ref,
c.ref,

npar =

VC =
alpha =
eps =
maxit =
quiet =
S3 method for
print(x, ...)
S3 method for
summary(object,
S3 method for
plot(x, ...)
S3 method for
predict(object,

P, D, Y,
HAPaH’

a.ref,
a.ref,

c(a =
p:
C:
pi =
ci
TRUE,
.05,
le-6,
100,
TRUE)
class 'LCa'

[o2Be) o) o))

1
(2]
~

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

class 'LCa'

show.est=FALSE,

class 'LCa'

class 'LCa'
newdata,

alpha

or one of "ACa", "APaC"”, "APCa" or "APaCa"
age reference for the interactions

age reference for the period interaction
age reference for the cohort interaction
period reference for the interaction
cohort reference for the interactions

no. knots
no. knots
no. knots
no. knots
no. knots
numerical

for main age-effect

for period-effect

for cohort-effect

for age in the period interaction
for age in the cohort interaction
calculation of the Hessian?

1 minus confidence level
convergence criterion

max.

no iterations

cut the crap

)

0.05,

LCa.fit 97

level = 1-alpha,
sim = ("vcov" %in% names(object)),
2D
Arguments

data A data frame. Must have columns A(age), P(period, that is calendar time), D(no.
of events) and Y(person-time, exposure). Alternatively these four quantities can
be given as separate vectors:

A Vector of ages (midpoint of observation).

P Vector of period (midpoint of observation).

D Vector of no. of events.

Y Vector of person-time. Demographers would say "exposure", bewildering epi-
demiologists.

a.ref Reference age for the age-interaction term(s) pi (x) and/or pi (x), where pi(a.ref)=1
and ci(a.ref)=1.

pi.ref Same, but specifically for the interaction with period.

ci.ref Same, but specifically for the interaction with cohort.

p.ref Reference period for the time-interaction term kp(t) where kp(p.ref)=0.

c.ref Reference period for the time-interaction term kp(t) where kc(c.ref)=0.

model Character, either "APa" which is the classical Lee-Carter model for log-rates,
other possibilities are "ACa", "APCa"”, "APaC" or "APaCa", see details.

npar A (possibly named) vector or list, with either the number of knots or the actual
vectors of knots for each term. If unnamed, components are taken to be in the
order (a,b,t), if the model is "APaCa" in the order (a,p,c,pi,ci). If a vector, the
three integers indicate the number of knots for each term; these will be placed
so that there is an equal number of events (D) between each, and half as many
below the first and above the last knot. If npar is a list of scalars the behavior is
the same. If npar is a list of vectors, these are taken as the knots for the natural
splines. See details for naming convention.

VC Logical. Should the variance-covariance matrix of the parameters be computed
by numerical differentiation? See details.

alpha 1 minus the confidence level used when calculating confidence intervals for es-
timates in LCa. fit and for predictions by predict.LCa.

eps Convergence criterion for the deviance, we use the the relative difference be-
tween deviance from the two models fitted.

maxit Maximal number of iterations.

quiet Shall I shut up or talk extensively to you about iteration progression etc.?

object An LCa object, see under "Value".

show.est Logical. Should the estimates be printed?

X An LCa object, see under "Value".

98

LCa.fit

newdata Prediction data frame, must have columns A and P. Any Y column is ignored,
predictions are given in units of the Y supplied for the call that generated the LCa
object.

level Confidence level.

sim Logical or numeric. If TRUE, prediction c.i.s will be based on 1000 simulations
from the posterior parameters. If numeric, it will be based on that number of
simulations.

Additional parameters passed on to the method.

Details

The Lee-Carter model is non-linear in age and time so does not fit in the classical glm-Poisson
framework. But for fixed b(x) it is a glm, and also for fixed a(x), k(t). The function alternately
fits the two versions until the same fit is produced (same deviance).

The multiplicative age by period term could equally well have been a multiplicative age by cohort
or even both. Thus the most extensive model has 5 continuous functions:

log(A(a, p)) = f(a) + by(a)ky(p) + be(a)k.(p — a)

Each of these is fitted by a natural spline, with knots placed at the quantiles of the events along the
age (a), calendar time (p) respective cohort (p-a) scales. Alternatively the knots can be specified
explicitly in the argument npar as a named list, where a refers to f(a), p refers to k,(p), c refers to
k.(p — a), pi (period interaction) refers to b,(a) and ci (cohort interaction) refers to b.(p — a).

The naming convention for the models is a capital P and/or C if the effect is in the model followed
by a lower case a if there is an interaction with age. Thus there are 5 different models that can be
fitted: APa, ACa, APaC APCa and APaCa.

The standard errors of the parameters from the two separate model fits in the iterations are however
wrong; they are conditional on a subset of the parameters having a fixed value. However, analytic
calculation of the Hessian is a bit of a nightmare, so this is done numerically using the hessian
function from the numDeriv package if VC=TRUE.

The coefficients and the variance-covariance matrix of these are used in predict.LCa for a para-
metric bootstrap (that is, a simulation from a multivariate normal with mean equal to the parameter
estimates and variance as the estimated variance-covariance) to get confidence intervals for the
predictions if simis TRUE — which it is by default if they are part of the object.

The plot for LCa objects merely produces between 3 and 5 panels showing each of the terms in the
model. These are mainly for preliminary inspection; real reporting of the effects should use proper
relative scaling of the effects.

Value

LCa.fit returns an object of class LCa (smooth effects Lee-Carter model); it is a list with the fol-
lowing components:

model Character, either APa, ACa, APaC, APCa or APaCa, indicating the variable(s) in-
teracting with age.

ax 3-column matrix of age-effects, c.i. from the age-time model. Row names are
the unique occurring ages in the dataset. Estimates are rates.

LCa.fit 99

pi 3-column matrix of age-period interaction effects, c.i. from the age model. Row
names are the actually occurring ages in the dataset. Estimates are multipliers
of the log-RRs in kp, centered at 1 at pi.ref.

kp 3-column matrix of period-effects, with c.i.s from the age-time model. Row
names are the actually occurring times in the dataset. Estimates are rate-ratios
centered at 1 at p.ref.

ci 3-column matrix of age-cohort interaction effects, c.i. from the age model. Row
names are the actually occurring ages in the dataset. Estimates are multipliers
of the log-RRs in kc, centered at 1 at ci.ref.

ke 3-column matrix of cohort-effects, with c.i.s from the age-time model. Row
names are the actually occurring times in the dataset. Estimates are rate-ratios
centered at 1 at c.ref.

mod. at g1lm object with the final age-time model — estimates the terms ax, kp, kc. Gives
the same fit as the mod. b model after convergence.

mod.b glm object with the final age model — estimates the terms pi, ci. Gives the
same fit as the mod. at model after convergence.

coef All coefficients from both models, in the order ax, kp, kc, pi, ci. Only present
if LCa.fit were called with VC=TRUE (the default).

vcov Variance-covariance matrix of coefficients from both models, in the same order
as in the coef. Only present if LCa. fit were called with VC=TRUE.

knots List of vectors of knots used in for the age, period and cohort effects.

refs List of reference points used for the age, period and cohort terms in the interac-
tions.

deviance Deviance of the model

df.residual Residual degrees of freedom

iter Number of iterations used to reach convergence.

plot.LCa plots the estimated effects in separate panels, using a log-scale for the baseline rates (ax)
and the time-RR (kt). For the APaCa model 5 panels are plotted.

summary.LCa returns (invisibly) a matrix with the parameters from the models and a column of
the conditional se.s and additionally of the se.s derived from the numerically computed Hessian (if
LCa.fit were called with VC=TRUE.)

predict.LCa returns a matrix with one row per row in newdata. If LCa.fit were called with
VC=TRUE there will be 3 columns, namely prediction (1st column) and c.i.s based on a simulation
of parameters from a multivariate normal with mean coef and variance vcov using the median and
alpha/2 quantiles from the sim simulations. If LCa.fit were called with VC=FALSE there will be
6 columns, namely estimates and c.i.s from age-time model (mod. at), and from the age-interaction
model (mod.b), both using conditional variances, and therefore likely with too narrow confidence
limits.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

This function was conceived while teaching a course on APC models at the Max Planck Institute
of Demographic Research (MPIDR, https://www.demogr.mpg.de/en/) in Rostock in May 2016

http://bendixcarstensen.com
https://www.demogr.mpg.de/en/

100 legendbox

(http://bendixcarstensen.com/APC/MPIDR-2016/), and finished during a week long research
stay there, kindly sponsored by the MPIDR.

See Also

apc.fit, apc.LCa, lca

Examples

library(Epi)

Load the testis cancer data by Lexis triangles
data(testisDK)

tc <- subset(testisDK, A>14 & A<60)

head(tc)

We want to see rates per 100,000 PY
tc$Y <- tc$y / 1075

Fit the Lee-Carter model with age-period interaction (default)
LCa.tc <- LCa.fit(tc, model="ACa", a.ref=30, p.ref=1980, quiet=FALSE, eps=10e-4, maxit=50)

LCa.tc
summary(LCa.tc)

Inspect what we got
names(LCa.tc)

show the estimated effects
par(mfrow=c(1,3))
plot(LCa.tc)

Prediction data frame for ages 15 to 60 for two time points:
nd <- data.frame(A=15:60)

LCa predictions

p70 <- predict.LCa(LCa.tc, newdata=cbind(nd,P=1970), sim=1000)
p90 <- predict.LCa(LCa.tc, newdata=cbind(nd,P=1990), sim=1000)

Inspect the curves from the parametric bootstrap (simulation):
par(mfrow=c(1,1))
head(cbind(p70,p90))
matplot(nd$A, cbind(p70,p90), type="1", lwd=c(6,3,3), lty=c(1,3,3),
col=rep(2:3, each=3), log="y",
ylab="Testis cancer incidence per 100,000 PY in 1970 resp. 1990", xlab="Age")

legendbox Draw a box with text explaining the numbers in and between boxes
from boxes.MS and boxes.Lexis

http://bendixcarstensen.com/APC/MPIDR-2016/

legendbox

Description

101

When drawing boxes describing a multistate model a legend explaining the numbers in the plot is
required. legendbox does this.

Usage

legendbox(x, vy,

Arguments

X

y

state
py
begin
end
trans
rates
font

right

left

Details

state
py
begin
end
trans
rates
font
right
left

= "State",

= "Person-time",
= "no. begin”,

= "no. end”,

= "Transitions”,
= "\n(Rate)",
:]’

= lleft,

= lright,

x-coordinate of the center of the box.

y-coordinate of the center of the box.

Text describing the state

Text describing the risk time

Text describing the no. persons starting FU in state
Text describing the no. persons ending FU in state
Text describing the no. of transitions

Text describing the rates

Font to use for the text

Should a text describing arrow texts be on the r.h.s. of the box? Defaults to
TRUE.

Should a text describing arrow texts be on the Lh.s. of the box?

Arguments passed on to tbox

The function is called for its side effect of adding an explanatory box to the plot. If right is true, an
explanation of events and rates are added to the right of the box. Similarly for 1lef't. It is admissible
that left ==right.

Value

None.

102 lep
Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also

boxes.Lexis

lep An unmatched case-control study of leprosy incidence

Description

The lep data frame has 1370 rows and 7 columns. This was an unmatched case-control study in
which incident cases of leprosy in a region of N. Malawi were compared with population controls.

Format

This data frame contains the following columns:

id: subject identifier: a numeric vector
d: case/control status: a numeric vector (1=case, O=control)
age: afactor with levels 5-9 10-14 15-19 20-24 25-29 30-44 45+
sex: a factor with levels male, female
bcg: presence of vaccine scar, a factor with levels no yes
school: schooling, a factor with levels none 1-5yrs 6-8yrs sec/tert
house: housing, a factor with levels brick sunbrick wattle temp

Source

The study is described in more detail in Clayton and Hills, Statistical Models in Epidemiology,
Oxford University Press, Oxford:1993.

Examples

data(lep)

http://bendixcarstensen.com

Lexis

103

Lexis

Create a Lexis object of follow-up

Description

Create an object of class Lexis to represent follow-up in multiple states on multiple time scales.

Usage
Lexis(entry
exit
duration

entry.status
exit.status
id

data

merge

states

notes

tol
keep.dropped
S3 method
print(x,

Arguments

entry

exit
duration
entry.status

exit.status

id

data

’

’

’

’

’

’

L

TRUE,

TRUE,
.Machine$double.eps”0.5,
FALSE)

for class 'Lexis'

td = 2,

nd = td,
rnam = FALSE,
org = FALSE)

a named list of entry times. Each element of the list is a numeric variable repre-
senting the entry time on the named time scale. The name of the elements of the
list will appear as names of variables designated as timescales in the resulting
object. All time scales must have the same units (e.g. years). The names of the
timescales must be different from any column name in data.

a named list of exit times.
a numeric vector giving the duration of follow-up.
a vector or a factor giving the status at entry

a vector or factor giving status at exit. Any change in status during follow-up is
assumed to take place exactly at the exit time.

a vector giving a unique identity value for each person represented in the Lexis
object. Defaults to 1:nrow(data)

an optional data frame, list, or environment containing the variables. If not
found in data, the variables are taken from the environment from which Lexis
was called.

104 Lexis

merge a logical flag. If TRUE then the data argument will be coerced to a data frame
and then merged with the resulting Lexis object.

states A vector of labels for the states. If given, the state variables lex.Cst and
lex.Xst are returned as factors with identical levels attributes equal to states.

notes Logical. Should notes on entry states and time be given.

tol Numerical tolerance for follow-up time. Rows with duration less than this value

are automatically dropped.

keep.dropped Logical. Should dropped rows from data be saved as an attribute with the object
for inspection?

X A Lexis object.

td Number of digits after the decimal separator used for timescales and lex.dur
when printing

nd Number of digits after the decimal separator used for other numerical variables
in the Lexis object.

rnam Logical, should row names be printed?

org Logical, should columns be printed in the original order?

Other parameters passed on to print.data.frame.

Details

The analysis of long-term population-based follow-up studies typically requires multiple time scales
to be taken into account, such as age, calendar time, or time since an event. A Lexis object is a
data frame with additional attributes that allows these multiple time dimensions of follow-up to be
managed.

Separate variables for current end exit state allows representation of multistate data.

Lexis objects are named after the German demographer Wilhelm Lexis (1837-1914), who is credited
with the invention of the "Lexis diagram" for representing population dynamics simultaneously by
several timescales in the book "Einleitung in die Theorie der Bevolkerungsstatistik" from 1875.

The Lexis function can create a minimal Lexis object with only those variables required to define
the follow-up history in each row. Additional variables can be merged into the Lexis object using
the merge method for Lexis objects. The latter is the default.

The print method prints the time-scale variables and other numerical variables rounded, possibly
differently. Reorders columns so the Lexis-specific variables comes first. Returns (invisibly) a
character vector with the (re)ordering of the columns in the object, even if org = TRUE is set.

There are also merge, subset, transform and many other methods for Lexis objects. They work
as the corresponding methods for data-frames but ensures that the result is a Lexis object.
Value

An object of class Lexis. This is represented as a data frame with a column for each time scale
(with names equal to the union of the names of entry and exit), and additional columns with the
following names:

lex.id Identification of the persons.

Lexis 105

lex.dur Duration of follow-up.
lex.Cst Entry status (Current state), i.e. the state in which the follow up takes place.
lex.Xst Exit status (eXit state), i.e. that state taken up after dur in lex.Cst.

If merge=TRUE (the default) then the Lexis object will also contain all variables from the data
argument.

Note

Only two of the three arguments entry, exit and duration need to be given. If the third parameter
is missing, it is imputed.

entry, exit must be numeric, using Date variables will cause some of the utilities to crash. Trans-
formation by cal.yr is recommended.

If only either exit or duration are supplied it is assumed that entry is 0. This is only meaningful
(and therefore checked) if there is only one timescale.

If any of entry.status or exit.status are of mode character, they will both be converted to
factors.

Ifentry.status is not given, then its class is automatically set to that of exit.status. If exit.status
is a character or factor, the value of entry. status is set to the first level. This may be highly un-
desirable, and therefore noted. For example, if exit.status is character the first level will be
the first in the alphabetical ordering; slightly unfortunate if values are c("Well”, "Diseased"”). If
exit.status is logical, the value of entry.status set to FALSE. If exit.status is numeric, the
value of entry.status set to 0.

If entry.status or exit.status are factors or character, the corresponding state variables in the
returned Lexis object, lex.Cst and lex. Xst will be (unordered) factors with identical set of levels,
namely the union of the levels of entry.status and exit.status.

Author(s)

Martyn Plummer with contributions from Bendix Carstensen

See Also

plot.Lexis, splitlLexis, cutlLexis, mcutlexis, rcutLexis, addCov.Lexis, merge.Lexis, subset.Lexis,
cbind.Lexis, rbind.Lexis, transform.Lexis, summary.Lexis, unLexis, timeScales, timeBand,
entry, exit, transient, absorbing, dur

Examples

A small bogus cohort
xcoh <- structure(list(id = c("A", "B", "C"),
birth = c("14/07/1952", "01/04/1954", "10/06/1987"),
entry = c("04/08/1965", "08/09/1972", "23/12/1991"),
exit = c("27/06/1997", "23/05/1995", "24/07/1998"),
fail = c(1, 0, 1)),
.Names = c("id", "birth”, "entry"”, "exit"”, "fail"),
row.names = c("1", "2", "3"),
class = "data.frame")

106 Lexis.diagram

Convert the character dates into numerical variables (fractional years)
xcoh <- cal.yr(xcoh, format="%d/%m/%Y", wh=2:4)
xcoh <- cal.yr(xcoh, format="%d/%m/%Y", wh=2:4)

See how it looks
xcoh
str(xcoh)

Define a Lexis object with timescales calendar time and age
Lcoh <- Lexis(entry = list(per = entry),
exit = list(per = exit,
age = exit - birth),
exit.status = fail,
data = xcoh)

Using character states may have undesired effects:
xcoh$Fail <- c("Dead”,"Well"”,"Dead")
xcoh
L1 <- Lexis(entry = list(per = entry),
exit = list(per = exit,

age = exit - birth),
exit.status = Fail,
data = xcoh)
L1
people start being dead!
...unless you order the levels sensibly

xcoh$Fail <- factor(xcoh$Fail, levels = c("Well”, "Dead"))
L2 <- Lexis(entry = list(per = entry),
exit = list(per = exit,
age = exit - birth),

exit.status = Fail,
data = xcoh)
L2
behaviour of print method:
L2[,1:6]
L2[,6:1]

print(L2[,6:1], org=TRUE)
(print(L2[,-31))

Lexis.diagram Plot a Lexis diagram

Description

Draws a Lexis diagram, optionally with life lines from a cohort, and with lifelines of a cohort if
supplied. Intended for presentation purposes.

Lexis.diagram

Usage

107

Lexis.diagram(age = c(@, 60),

e

b

Arguments
age
alab
date
dlab

int

lab.int
col.life
lwd.life
age.grid
date.grid
coh.grid
col.grid
lwd.grid

col.
Iwd.
age.

date.

coh.
col.
Iwd.

alab = "Age",
date = c(1940, 2000),
dlab = "Calendar time”,

int = 5,
lab.int = 2xint,

life = "black”,
life = 2,
grid = TRUE,
grid = TRUE,
grid = FALSE,
grid = gray(0.7),
grid = 1,

las =1,
date = NA,

ntry.

entry.age = NA,
exit.date = NA,

exit.age = NA,

risk.
irth.

cex.
pch.
col.

time = NA,
date = NA,
fail = NA,
fail = 1.1,
fail = c(NA,16),

fail = rep(col.life, 2),
data = NULL, ...)

Numerical vector of length 2, giving the age-range for the diagram

Label on the age-axis.

Numerical vector of length 2, giving the calendar time-range for the diagram
label on the calendar time axis.

The interval between grid lines in the diagram. If a vector of length two is given,
the first value will be used for spacing of age-grid and the second for spacing of
the date grid.

The interval between labelling of the grids.

Colour of the life lines.

Width of the life lines.

Should grid lines be drawn for age?

Should grid lines be drawn for date?

Should grid lines be drawn for birth cohorts (diagonals)?
Colour of the grid lines.

Width of the grid lines.

108 Lexis.diagram

las How are the axis labels plotted?

entry.date, entry.age, exit.date, exit.age, risk.time, birth.date
Numerical vectors defining lifelines to be plotted in the diagram. At least three
must be given to produce lines. Not all subsets of three will suffice, the given
subset has to define life lines. If insufficient data is given, no life lines are

produced.
fail Logical of event status at exit for the persons whose life lines are plotted.
pch.fail Symbols at the end of the life lines for censorings (fail==0) and failures (fail
1=0).
cex.fail Expansion of the status marks at the end of life lines.
col.fail Character vector of length 2 giving the colour of the failure marks for censorings

and failures respectively.
data Dataframe in which to interpret the arguments.

Arguments to be passed on to the initial call to plot.

Details

The default unit for supplied variables are (calendar) years. If any of the variables entry.date,
exit.date or birth.date are of class "Date" or if any of the variables entry.age, exit.age or
risk.time are of class "difftime", they will be converted to calendar years, and plotted correctly
in the diagram. The returned dataframe will then have colums of classes "Date" and "difftime".

Value

If sufficient information on lifelines is given, a data frame with one row per person and columns
with entry ages and dates, birth date, risk time and status filled in.

Side effect: a plot of a Lexis diagram is produced with the life lines in it is produced. This will be
the main reason for using the function. If the primary aim is to illustrate follow-up of a cohort, then
it is better to represent the follow-up in a Lexis object, and use the generic plot.Lexis function.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also

Life.lines, Lexis.lines

Examples

Lexis.diagram(entry.age = c(3,30,45),
risk.time = c(25,5,14),
birth.date = ¢(1970,1931,1925.7),
fail = c(TRUE,TRUE,FALSE))
LL <- Lexis.diagram(entry.age = sample(0:50, 17, replace=TRUE),
risk.time = sample(5:40, 17, r=TRUE),
birth.date = sample(1910:1980, 17, r=TRUE),
fail = sample(0:1, 17, r=TRUE),

http://bendixcarstensen.com

Lexis.lines

109

cex.fail = 1.1,
lwd.life = 2)

Identify the persons' entry and exits
text(LL$exit.date, LL$exit.age, paste(1:nrow(LL)), col="red"”, font=2, adj=c(0,1))
text(LL$entry.date, LL$entry.age, paste(1:nrow(LL)), col="blue"”, font=2, adj=c(1,0))

data(nickel)
attach(nickel)

LL <- Lexis.diagram(age=c(10,100), date=c(1900,1990),

entry.age=agelst, exit.age=ageout, birth.date=dob,

fail=(icd %in% c(162,163)), lwd.life=1,
cex.fail=0.8, col.fail=c("green"”,"red"”))
abline(v=1934, col="blue")

nickel[1:10,]

LL[1:10,]

Lexis.lines

Draw life lines in a Lexis diagram.

Description

Add life lines to a Lexis diagram.

Usage

Lexis.lines(entry.date = NA,

Arguments

exit.date = NA,
birth.date = NA,
entry.age = NA,

exit.age = NA,

risk.time = NA,

col.life = "black”,
lwd.life = 2,
fail = NA,
cex.fail =1,
pch.fail = c(NA, 16),
col.fail = col.life,
data = NULL)

entry.date, entry.age, exit.date, exit.age, risk.time, birth.date

col.life
lwd.life
fail

Numerical vectors defining lifelines to be plotted in the diagram. At least three
must be given to produce lines. Not all subsets of three will suffice, the given
subset has to define life lines. If insufficient data is given, no life lines are
produced.

Colour of the life lines.
Width of the life lines.

Logical of event status at exit for the persons whose life lines are plotted.

110 Lexis2Zmsm
cex.fail The size of the status marks at the end of life lines.
pch.fail The status marks at the end of the life lines.
col.fail Colour of the marks for censorings and failures respectively.
data Data frame in which to interpret values.
Value

If sufficient information on lifelines is given, a data frame with one row per person and columns
with entry ages and dates, birth date, risk time and status filled in.

Side effect: Life lines are added to an existing Lexis diagram. Lexis.lines adds life lines to an

existing plot.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://bendixcarstensen.com

See Also

Lexis.diagram, Life.lines

Examples

Lexis.diagram(entry.age = c(3,30,45),

risk.time
birth.date

c(25,5,14),
c(1970,1931,1925.7),

fail = c(TRUE, TRUE,FALSE))

Lexis.lines(entry.age
risk.time

birth.date

fail

cex.fail =

lwd.1life

= sample(0:50, 100, replace=TRUE),

= sample(5:40, 100, r=TRUE),
= sample(1910:1980, 100, r=TRUE),
= sample(@:1,100,r=TRUE),
0.5,
=1)

Lexis2msm

Convert a Lexis obejct to a data set suitable for input to the msm: msm
function.

Description

The number of records in the resulting dataset will have a number of records that is normally
nrec(Lx) + nid(Lx), that is one extra record for each person. If there are ’holes’ in persons’
follow-up, each hole will also generate an extra record in the result.

Usage

Lexis2msm(Lx,

state = "state”,
verbose = FALSE)

http://bendixcarstensen.com

Igrep 111

Arguments
Lx A Lexis object.
state Character; the name of the state variable in the result.
verbose If true, you will be reminded what the function did.
Value

A data frame of class msmLexis with the timescales preserved and lex. id preserved but with other
lex. variables removed.

Has more records than the original Lexis object

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also

Lexis

Examples

example(mcutlLexis)
we now have the Lexis object L3:
summary(L3)

data frame for use with msm
msm3 <- Lexis2msm(L3)

see the difference

subset(L3, lex.id %in% 1:3)
subset(msm3, lex.id %in% 1:3)
timeScales(msm3)

lgrep Convenience versions of grep

Description
Often you want the elements of a vector (or its names or levels) that meet a certain pattern. But
grep only gives you the position, so these functions are designed to give you that.

Usage

fgrep(pattern, x, ...)
ngrep(pattern, x,
lgrep(pattern, x, ...)

g

http://bendixcarstensen.com

112 Life.lines

Arguments
pattern Pattern searched for.
X Object where pattern is searched. Or in whose names or levels attributes
pattern is sought.
Arguments passed on to grep.
Value

Elements of the input x (fgrep) or its names attribute (ngrep) or levels attribute (1grep).

Author(s)

Bendix Carstensen, <b@bxc.dk>, http://bendixcarstensen.com

See Also

grep

Examples

ff <- factor(11 <- paste(sample(letters[1:3], 20, replace=TRUE),
sample(letters[1:3], 20, replace=TRUE), sep=""))

£f

fgrep("a", ff)

fgrep("a", 11)

ngrep("a", ff)

lgrep("a", ff)

lgrep("a", ff, invert=TRUE)

Life.lines Compute dates/ages for life lines in a Lexis diagram

Description

Fills out the missing information for follow up of persons in a Lexis diagram if sufficient informa-
tion is given.

Usage

Life.lines(entry.date = NA,
exit.date = NA,
birth.date = NA,
entry.age = NA,
exit.age = NA,
risk.time = NA)

http://bendixcarstensen.com

1Is 113

Arguments

entry.date, exit.date, birth.date, entry.age, exit.age, risk.time
Vectors defining lifelines to be plotted in the diagram. At least three must be
given to produce a result. Not all subsets of three will suffice, the given subset
has to define life lines. If insufficient data is given, nothing is returned and a
warning is given.

Value

Data frame with variables entry.date, entry.age, exit.date, exit.age, risk.time, birth.date,
with all entries computed for each person. If any of entry.date, exit.date or birth.date are of
class Date orif any of entry.age, exit.age or risk. time are of class difftime the date variables
will be of class Date and the other three of class difftime.

See Also

Lexis.diagram, Lexis.lines

Examples

(Life.lines(entry.age = c(3,30,45),
risk.time = c(25,5,14),
birth.date = ¢(1970,1931,1925.7)))

Draw a Lexis diagram
Lexis.diagram()

Compute entry and exit age and date.
(LL <= Life.lines(entry.age = c(3,30,45),

risk.time = c(25,5,14),

birth.date = ¢c(1970,1931,1925.7)))
segments(LL[,1], LL[,2], LL[,3], LL[,4]) # Plot the life lines.

Compute entry and exit age and date, supplying a date variable
bd <- (c(1970,1931,1925.7) - 1970) * 365.25
class(bd) <- "Date”
(Life.lines(entry.age = c(3,30,45),
risk.time = c(25,5,14),
birth.date = bd))

11s Functions to manage and explore the workspace

Description

These functions help you to find out what has gone wrong and to start afresh if needed.

114 1Is

Usage
lls(pos = 1, pat = "", all=FALSE, print=TRUE)
clear()
Arguments
pos Numeric. What position in the search path do you want listed.
pat Character. List only objects that have this string in their name.
all Logical. Should invisible objects be printed too - see 1s to which this argument
is passed.
print Logical. Should the result be printed?
Details

11s is designed to give a quick overview of the name, mode, class and dimension of the object in
your workspace. They may not always be what you think they are.

clear clears all your objects from workspace, and all attached objects too — it only leaves the
loaded packages in the search path; thus allowing a fresh start without closing and restarting R.

Value

11s returns a data frame with four character variables: name, mode, class and size and one row
per object in the workspace (if pos=1). size is either the length or the dimension of the object. The
data frame is by default printed with left-justified columns.

Author(s)

11s: Unknown. Modified by Bendix Carstensen from a long forgotten snatch.

clear: Michael Hills / David Clayton.

Examples

x <- 1:10

y <- rbinom(10, 1, 0.5)
ml <- glm(y ~ x, family=binomial)
M <- matrix(1:20, 4, 5)
M<-M

dfr <- data.frame(x,y)
attach(dfr)

11s()

search()

clear()

search()

11s()

11s(all=TRUE)

IungDK 115

lungDK Male lung cancer incidence in Denmark

Description

Male lung cancer cases and population riks time in Denmark, for the period 1943-1992 in ages
40-89.

Usage

data(lungDK)

Format

A data frame with 220 observations on the following 9 variables.

A5: Left end point of the age interval, a numeric vector.
P5: Left enpoint of the period interval, a numeric vector.
C5: Left enpoint of the birth cohort interval, a numeric vector.
up: Indicator of upper trianges of each age by period rectangle in the Lexis diagram. (up=(P5-A5-C5)/5).
Ax: The mean age of diagnois (at risk) in the triangle.
Px: The mean date of diagnosis (at risk) in the triangle.
Cx: The mean date of birth in the triangle, a numeric vector.
D: Number of diagnosed cases of male lung cancer.
Y: Risk time in the male population, person-years.

Details

Cases and person-years are tabulated by age and date of diagnosis (period) as well as date of birth
(cohort) in 5-year classes. Each observation in the dataframe correponds to a triangle in a Lexis
diagram. Triangles are classified by age and date of diagnosis, period of diagnosis and date of birth,
all in 5-year groupings.

Source

The Danish Cancer Registry and Statistics Denmark.

References

For a more thorough exposition of statistical inference in the Lexis diagram, see: B. Carstensen:
Age-Period-Cohort models for the Lexis diagram. Statistics in Medicine, 26: 3018-3045, 2007.

116 M.dk

Examples

data(lungDK)
Draw a Lexis diagram and show the number of cases in it.
attach(lungDK)

Lexis.diagram(age=c(40,90), date=c(1943,1993), coh.grid=TRUE)
text(Px, Ax, paste(D), cex=0.7)

M.dk Mortality in Denmark 1974 ff.

Description

Mortality in one-year classes of age (0-98,99+) and period (1974 ff.) in Denmark.

Usage

data(M.dk)

Format
A data frame with 6400 observations on the following 6 variables.
A Age-class, 0-98, 99:99+
sex Sex. 1:males, 2:females
P Period (year) of death
D Number of deaths
Y Number of person-years

rate Mortality rate per 1000 person-years

Details
Deaths in ages over 100 are in the class labelled 99. Risk time is computed by tabulation of the risk
time in Y.dk, except for the class 99+ where the average of the population size in ages 99+ at the
first and last date of the year is used.

Source

http://www.statistikbanken.dk/statbank5a/SelectTable/omrade@.asp?SubjectCode=02&
PLanguage=1&ShowNews=0FF

http://www.statistikbanken.dk/statbank5a/SelectTable/omrade0.asp?SubjectCode=02&PLanguage=1&ShowNews=OFF
http://www.statistikbanken.dk/statbank5a/SelectTable/omrade0.asp?SubjectCode=02&PLanguage=1&ShowNews=OFF

mat2pol 117

Examples

data(M.dk)
str(M.dk)

zz <- xtabs(rate ~ sex+A+P, data=M.dk)
zz[zz==0] <- NA # O@s makes log-scale plots crash
par(mfrow=c(1,2), mar=c(0,0,0,0), oma=c(3,3,1,1), mgp=c(3,1,0)/1.6)
for(i in 1:2)
{
matplot(dimnames(zz)[[2]]1, zz[i,,]1,
1ty=1, 1lwd=1, col=rev(heat.colors(37)),
log="y", type="1", ylim=range(zz,na.rm=TRUE),
ylab="", xlab="", yaxt="n")
text(@0, max(zz,na.rm=TRUE), c("M","F")[i], font=2, adj=0:1, cex=2, col="gray")
if(i==1) axis(side=2, las=1)
}
mtext(side=1, "Age", line=2, outer=TRUE)
mtext(side=2, "Mortality rate”, line=2, outer=TRUE)

mat2pol Plot columns of a matrix as stacked areas.

Description

matrix to polygon: Plot columns of a matrix as stacked areas.

Usage

mat2pol(pm,
perm = 1:ncol(pm),

X = as.numeric(rownames(pm)),
col = rainbow(ncol(pm)),
yl =0:1,

append = FALSE,

Arguments
pm Numerical matrix.
perm integer vector of length ncol (pm), used to permute the columns of pm.
X Numeric. The x-axis of the plot.
col Colors of the areas.
yl y-axis limits.
append Logical. Should the polygons be added to an exiating plot

Further parameters passed to plot.

118 matshade

Details
The function is originally intended to plot stacked probabilities, hence the default of @:1 for the
y-axis.

Value

A matrix of ncol(pm)+1 columns with the first equal to 0, and the remaining the cumulative sum
of the columns of pm[perm].

The function is called for its side effect - the stacked polygons.

Author(s)

Bendix Carstensen

Examples

M <- cbind(sort(runif(10)), sort(runif(10)), sort(runif(10)))
pm <- sweep(M, 1, apply(M,1,sum), "/")
mat2pol(pm)

matshade Plot confidence intervals as shaded areas around lines.

Description

Uses an x-vector and a matrix of 3*N columns with estimates and ci.s to produce the lines of
estimates and confidence intervals as shaded areas in transparent colours around the lines of the
estimates.

Usage
matshade(x, y, 1ty =1,

col = 1:(ncol(y)/3), col.shade=col, alpha=0.15,
plot = dev.cur()==1,
Arguments
X Numerical vector. Unlike matplot this can only be a vector.
y A matrix with 3*N columns — representing estimates and confidence bounds
for N curves. Order of columns are assumed to be (est,lo,hi,est,lohi...) (or
(est,hi,lo...))
1ty Line types for the curves.
col Color(s) of the estimated curves.
col.shade Color(s) of the shaded areas. These are the colors that are made transparent by

the alpha factor. Defaults to the same colors as the lines.

matshade

alpha

plot

Details

119

Number in [0,1] indicating the transparency of the colors for the confidence
intervals. Larger values makes the shades darker. Can be a vector which then
applies to the curves in turn.

Logical. Should a new plot frame be started? If no device is active, the default
is to start one, and plot all ys versus x in transparent color. On the rare occasion
a device is open, but no plot have been called you will get an error telling that
plot.new has not been called yet, in which case you should explicitly set plot to
TRUE.

Arguments passed on to matplot (if plot=TRUE) and matlines for use when
plotting the lines. Note that 1wd=@ will cause lines to be omitted and only the
shades be plotted.

All shaded areas are plotted first, the curves added afterwards, so that lines are not ’overshadowed’.

If there are NAs in x or y there will be separate shaded areas for each non-NA sequence. Applies
separately to each set of confidence bands in y.

Note that if you repeat the same command, you will get the curves and the shaded areas overplotted
in the same frame, so the effect is to have the shades darker, because the transparent colors are
plotted on top of those from the first command.

Value

NULL. Used for its side effects.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also

pc.matshade

Examples

Follow-up data of Danish DM patients

data(DMlate)

mL <- Lexis(entry=list(age=dodm-dobth,per=dodm),
exit=list(per=dox),
exit.status=factor(!is.na(dodth),labels=c("Alive”,"Dead")),
data=DMlate)
Split follow-up and model by splines
sL <- splitLexis(mL, breaks=0:100, time.scale="age")

Not run:

the same thing with popEpi
sL <- splitMulti(mL, age=0:100)

End(Not run)

Mortality rates separately for M and F:
mort <- glm((lex.Xst=="Dead") ~ sex*Ns(age,knots=c(15,3:8%10)),

http://bendixcarstensen.com

120 mcutLexis

offset = log(lex.dur),
family = poisson,
data = sL)

Not run:
The counterpart with gam
library(mgcv)
mort <- gam((lex.Xst=="Dead") ~ s(age,by=sex) + sex,
offset = log(lex.dur),
family = poisson,
data = sL)

End(Not run)

predict rates (per 1000 PY) for men and women

ndM <- data.frame(age=10:90, sex="M", lex.dur=1)

ndF <- data.frame(age=10:90, sex="F", lex.dur=1)

gam objects ignores the offset in prediction so

lex.dur=1000 in prediction frame wll not work.

prM <- ci.pred(mort, ndM)*1000

prF <- ci.pred(mort, ndF)*1000

predict rate-ratio

MFr <- ci.exp(mort, ctr.mat=list(ndM,ndF))

plot lines with shaded confidence limits

for illustration we make a holes for the RRs:

MFr[40:45,2] <- NA

MFr[44:49,1] <- NA

matshade(ndM$age, cbind(MFr, prF, prM), col=c(1,2,4), lwd=3,
log="y", xlab="Age", ylab="Mortality per 1000 PY (and RR)")

abline(h=1)

mcutlLexis Cut follow-up at multiple event dates and keep track of order of events

Description

A generalization of cutLexis to the case where different events may occur in any order (but at most
once for each).

Usage

mcutLexis(L@, timescale = 1, wh,
new.states = NULL,
precursor.states = transient(L0),
seq.states = TRUE,
new.scales = NULL,
ties.resolve = FALSE)

Arguments

Lo A Lexis object.

mcutLexis

timescale

wh

new.states

121

Which time scale do the variables in LO[,wh] refer to. Can be character or
integer.

Which variables contain the event dates. Character or integer vector

Names of the events forming new states. If NULL equal to the variable names
from wh.

precursor.states

seq.states

new.scales

ties.resolve

Value

Which states are precursor states. See cutlLexis for definition of precursor
states.

Should the sequence of events be kept track of? That is, should A-B be consid-
ered different from B-A. If FALSE, the state with combined preceding events A
and B will be called A+B (alphabetically sorted).

May also be supplied as character: s - sequence, keep track of sequence of states
occupied (same as TRUE), u - unordered, keep track only of states visited (same
as FALSE) or 1, c - last or current state, only record the latest state visited. If
given as character, only the first letter converted to lower case is used.

Should we construct new time scales indicating the time since each of the event
occurrences.

Should tied event times be resolved by adding random noise to tied event dates.
If FALSE the function will not accept that two events occur at the same time for
a person (ties). If TRUE a random quantity in the range c(-1,1)/100 will be
added to all event times in all records with at least one tie. If ties.resolve is
numeric a random quantity in the range c(-1,1)*ties.resolve will be added
to all event times in all records with at least one tie.

A Lexis object with extra states created by occurrence of a number of intermediate events.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also

cutlLexis, rcutlLexis, addCov.Lexis, Lexis, splitlLexis

Examples

A dataframe of times

set.seed(563248)

dd <- data.frame(id = 1:30,

doN = round(runif(30,-30, 0),1),

doE = round(runif(30, 0,20),1),

doX = round(runif(30, 50,60),1),

doD = round(runif(30, 50,60),1),

these are the event times

doA = c(NA,21,NA,27,35,NA,52, 5,43,80,
NA,22,56,28,53,NA,51, 5,43,80,
NA,23,NA,33,51,NA,55, 5,43,80),

http://bendixcarstensen.com

122

doB = c(NA,20,NA,53,27,NA, 5,52,34,83,
NA,20,23,37,35,NA,52, 8,33,NA,
25,NA,37,40,NA,NA, 15,23,36,61))

set up a Lexis object with time from entry to death/exit
Lx <- Lexis(entry = list(time=doE,
age=doE-doN),
exit = list(time=pmin(doX,doD)),
exit.status = factor(doD<doX, labels=c("0K","D")),
data = dd)

summary(Lx)

cut the follow-up at dates doA and doB
L2 <- mcutLexis(Lx, "time", wh=c("doA","doB"),
new.states = c("A","B"),
precursor.states = "OK",
seq.states = TRUE,
new.scales = c("tfA","tfB"))
summary(L2)
L2

show the states
boxes(L2, boxpos=list(x=c(10,60,50,90,50,90),
y=c(50,50,90,90,10,10)),
scale.R=100, show.BE=TRUE, DR.sep=c(” (",")"))

L3 <- mcutLexis(Lx, "time", wh=c("doA","doB"),
new.states = c("A","B"),
precursor.states = "0K",
seq.states = FALSE,
new.scales = c("tfA","tfB"))
summary(L3)
boxes(L3, boxpos=list(x=c(10,50,50,90,50),
y=c(50,50,90,50,10)),
show.R=FALSE, show.BE=TRUE)

merge.Lexis

merge.Lexis Merge a Lexis object with a data frame

Description

Merge additional variables from a data frame into a Lexis object.

Usage

S3 method for class 'Lexis'
merge(x, y, id, by, ...)

mh 123

Arguments
X an object of class Lexis
y a data frame
id the name of the variable in y to use for matching against the variable lex.id in
X.
by if matching is not done by id, a vector of variable names common to both x and
y
optional arguments to be passed to merge.data. frame
Details

A Lexis object can be considered as an augmented data frame in which some variables are time-
dependent variables representing follow-up. The Lexis function produces a minimal object con-
taining only these time-dependent variables. Additional variables may be added to a Lexis object
using the merge method.

Value

A Lexis object with additional columns taken from the merged data frame.

Note

The variable given as the by .y argument must not contain any duplicate values in the data frame y.

Author(s)

Martyn Plummer

See Also

merge.data.frame, subset.Lexis

mh Mantel-Haenszel analyses of cohort and case-control studies

Description

This function carries out Mantel-Haenszel comparisons in tabulated data derived from both cohort
and case-control studies.

Usage

mh(cases, denom, compare=1, levels=c(1, 2), by=NULL,
cohort=!is.integer(denom), confidence=0.9)

S3 method for class 'mh'

print(x, ...)

124

Arguments

cases

denom

compare

levels

by

cohort

confidence

Details

the table of case frequencies (a multiway array).

the denominator table. For cohort studies this should be a table of person-years
observation, while for case-control studies it should be a table of control fre-
quencies.

the dimension of the table which defines the comparison groups (can be referred
to either by number or by name). The default is the first dimension of the table.

a vector identifying (either by number or by name) the two groups to be com-
pared. The default is the first two levels of the selected dimension.

the dimensions not to be collapsed in the Mantel-Haenszel computations. Thus,
this argument defines the structure of the resulting tables of estimates and tests.

an indicator whether the data derive from a cohort or a case-control study. If the
denominator table is stored as an integer, a case-control study is assumed.

the approximate coverage probability for the confidence intervals to be com-
puted.

a mh object

arguments passed on to print

Multiway tables of data are accepted and any two levels of any dimension can be chosen as defining
the comparison groups. The rate (odds) ratio estimates and the associated significance tests may be
collapsed over all the remaining dimensions of the table, or over selected dimensions only, so that
tables of estimates and tests are computed.

Value

A list of class mh giving tables of rate (odds) ratio estimates, their standard errors (on a log scale),
lower and upper confidence limits, chi-squared tests (1 degree of freedom) and the corresponding
p-values. The result list also includes numerator and denominator of the Mantel-Haenszel estimates
(g, r), and score test statistics and score variance (u, v).

Side Effects

None

References

Clayton, D. and Hills, M. : Statistical Models in Epidemiology, Oxford University Press (1993).

See Also

Lexis

mod.Lexis 125

Examples

If d and y are 3-way tables of cases and person-years
observation formed by tabulation by two confounders
(named "C1" and "C2") an exposure of interest ("E"),
the following command will calculate an overall
Mantel-Haenszel comparison of the first two exposure
groups.

N

Generate some bogus data
dnam <- list(E=c("low"”,"medium”,"high"), Cl=letters[1:2], C2=LETTERS[1:4])
d <- array(sample(2:80, 24),
dimnames=dnam, dim=sapply(dnam, length))
y <- array(abs(rnorm(24, 227, 50)),
dimnames=dnam, dim=sapply(dnam, length))
mh(d, y, compare="E")
#
Or, if exposure levels named "low"” and "high" are to be
compared and these are not the first two levels of E :
#
mh(d, y, compare="E", levels=c("low”, "high"))
#
If we wish to carry out an analysis which controls for C1,
but examines the results at each level of C2:
#
mh(d, y, compare="E", by="C2")
#
It is also possible to look at rate ratios for every
combination of C1 and C2 :
#
mh(d, y, compare="E", by=c("C1", "C2"))
#
If dimensions and levels of the table are unnamed, they must
be referred to by number.
#

mod.Lexis Fit intensity models to follow-up data in Lexis objects

Description

Modeling intensities based on Lexis objects, exploiting the structure of the Lexis objects where
the events and risk time have predefined representations. This allows a simpler syntax than the
traditional explicit modeling using glm, gam and coxph. Requires that lex.Cst and lex.Xst are
defined as factors.

But it is just a set of wrappers for glm, gam and coxph.

126 mod.Lexis
Usage
glmLexis(Lx, formula,
from = preceding(Lx, to), to = absorbing(Lx),
paired = FALSE, link = "log", scale = 1, verbose = TRUE, L)
gamLexis(Lx, formula,
from = preceding(Lx, to), to = absorbing(Lx),
paired = FALSE, link = "log", scale = 1, verbose = TRUE, L)
coxphLexis(Lx, formula,
from = preceding(Lx, to), to = absorbing(Lx),
paired = FALSE, verbose = TRUE, ...)
glm.Lexis(Lx, # Lexis object
formula, # ~ model
from = preceding(Lx, to), # 'from' states
to = absorbing(Lx) , # '"to' states
paired = FALSE, # only the pairwise
link = "log", # link function
scale = 1, # scaling of PY
verbose = TRUE, # report what is done?
o) # further arguments to glm
gam.Lexis(Lx, # Lexis object
formula, # ~ model
from = preceding(Lx, to), # 'from' states
to = absorbing(Lx) , # 'to' states
paired = FALSE, # only the pairwise
link = "log"”, # link function
scale = 1, # scaling of PY
verbose = TRUE, report what is done?

coxph.Lexis(Lx

’

#
further arguments to gam
Lexis object

formula, # timescale ~ model
from = preceding(Lx, to), # 'from' states
to = absorbing(Lx) , # 'to' states
paired = FALSE, # only the pairwise
verbose = TRUE, # report what is done?
L) # further arguments to coxph
Arguments
Lx A Lexis object representing cohort follow-up.
formula Model formula describing the model for the intensity(-ies). For glm and gam,
the formula should be one-sided; for coxph the formula should be two-sided
and have the name of the time-scale used for baseline hazard as the 1.h.s.
from Character vector of states from which transitions are considered. May also be
an integer vector in which case the reference will be to the position of levels of
lex.Cst. Defaults to the collection of transient states immediately preceding
the absorbing states.
to Character vector of states to which a transition is considered an event. May also

mod.Lexis 127

be an integer vector in which case the reference will be to the position of levels
of lex.Xst. Defaults to the set of absorbing states.

paired Logical. Should the states mentioned in to, rep. from be taken as pairs, indicat-
ing the only transitions modeled. If FALSE all transitions from any of the states
in from to any states in to are modeled.

link Character; name of the link function used, allowed values are 'log' (the de-
fault), 'identity' and 'sqrt', see the family poisreg.

scale Scalar. lex.dur is divided by this number before analysis, so that you can get
resulting rates on a scale of your wish.

verbose Print information on the states modeled?

Further arguments passed on to glm, glm or coxph

Details

The functions with and without dots in the name are identical

The glm and gam models are fitted using the family poisreg which is a bit faster than the traditional
poisson family. The response variable for this family is a two-column vector of events and person-
time respectively, so the predictions, for example using ci.pred does not require lex.dur (and
would ignore this) as variable in the newdata. ci.pred will return the estimated rates in units of
the lex.dur in the Lexis object, scaled by scale, which has a default value of 1.

The default is to model all transitions into any absorbing state by the same model (how wise is
that??). If only from is given, to is set to all states reachable from from, which may be a really
goofy model and if so a warning is issued. If only to is given, from is set to the collection of states
from which to can be reached directly — see preceding and its cousins. This convention means
that if you have a Lexis object representing a simple survival analysis, with states, say, "alive" and
"dead", you can dispense with the from and to arguments.

Occasionally you only want to model a subset of the possible transitions from states in from to
states in to, in which case you specify from and to as character vectors of the same length and set
paired=TRUE. Then only transitions from[i] to to[i], i=1,2,... will be modeled.

There is no working update functions for these objects (yet).

Strictly speaking, it is a bit counter-intuitive to have the time-scale on the Lh.s. of the formula for
the coxph since the time scale is also a predictor of the occurrence rate. On the other hand, calling
coxph directly would also entail having the name of the time scale in the Surv object on the Lh.s.
of the formula. So the inconsistency is merely carried over from coxph.

Value

glmLexis returns a glm object, which is also of class glm.lex, gamLexis returns a gam object,
which is also of class gam.lex, and coxphLexis returns a coxph object, which is also of class
coxph. lex. These extra class attributes are meant to facilitate the (still pending) implementation of
an update function.

The returned objects all have an extra attribute, Lexis which is a list with entries data, the name
of the Lexis object modeled (note that it is not the object, only the name of it, which may not
be portable); trans, a character vector of transitions modeled; formula, the model formula; and
scale, the scaling applied to 1lex.dur before modeling.

128 mod.Lexis

Only the glm and gam objects have the scale element in the list; a scalar indicating the scaling
of lex.dur before modeling. Note that the formula component of the Lexis attribute of a coxph
object is a two-sided formula with the baseline time scale as the Lh.s.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com.

See Also

Lexis, cutlLexis, mcutlLexis, addCov.Lexis, absorbing, transient

Examples

library(Epi)
library(survival)
data(DMlate)

Lexis object of total follow-up
mL <- Lexis(entry = list(age=dodm-dobth,per=dodm),
exit = list(per=dox),
exit.status = factor(!is.na(dodth),labels=c("Alive"”,"Dead")),
data = DMlate)

Cut follow-up at start of insulin use
cL <- cutLexis(mL, cut = mL$doins,

timescale = "per”,
new.state = "Ins”,
precursor.states = "Alive"”)

Split follow-up on age-axis

system.time(sL <- splitLexis(cL, breaks=0:25*%4, time.scale="age"))
(consider splitMulti from the popEpi package)

summary(sL)

glm models for rates based on the time-split dataset by insulin and sex

Proportional hazards model with insulin as time-dependent variable
- uses the defaul of modeling all transitions from both transient
states ("Alive" and "Ins") to the absorbing state ("Dead”).

mt <- glmLexis(sL, ~ sex + lex.Cst + Ns(age,knots=c(15,3:8%10)))

prediction of mortality rates from "Alive” with and without PH assumption
nA <- data.frame(age=40:70, sex="M", lex.Cst="Alive")
nl <- data.frame(age=40:70, sex="M", lex.Cst="Ins")
matshade(nA$age, cbind(ci.pred(mt,nA),
ci.pred(mt,nI))*1000, plot=TRUE,
lwd=3, 1lty=1, log="y", col=c("black”,"blue"”,"red"),
xlab="Age", ylab="Mortality per 1000 PY")

gam models may take some time to run so we leave it out
Not run:

http://bendixcarstensen.com

mortDK

mt.gam <- gamLexis(sL, ~ sex + lex.Cst + s(age), to="Dead",

scale=1000)

End(Not run)

Fit a Cox model for mortality with age as baseline time scale and
insulin (lex.Cst) as time-dependent covariate
mt.cox <- coxphLexis(sL, age ~ sex + lex.Cst, c("Alive”,"Ins"), "Dead")

Pretty much the

ci.exp(mt , Subset="ex")
ci.exp(mt.gam, subset="ex")
ci.exp(mt.cox, subset="ex")

same results for regression paramters as the glm:

129

mortDK

Population mortality rates for Denmark in I-year age-classes.

Description

The mortDK data frame has 1820 rows and 21 columns.

Format

This data frame contains the following columns:

age:
per:
sex:
risk:
dt:
rt:

ri:
r2:
r3:
ra:
rs:
reé:
r7:
ra:
ro:
r1o:
ril:
ri12:
ri3:
ri4:
ri15:

Age class, 0-89, 90:90+.

Calendar period, 38: 1938—42, 43: 194347, ..., 88:1988-92.

Sex, 1: male, 2: female.

Number of person-years in the Danish population.

Number of deaths.

Overall mortality rate in cases per 1000 person-years, i.e. rt=1000*dt/risk
Cause-specific mortality rates in cases per 1000 person-years:

Infections

Cancer.

Tumors, benign, unspecific nature.
Endocrine, metabolic.

Blood.

Nervous system, psychiatric.
Cerebrovascular.

Cardiac.

Respiratory diseases, excl. cancer.
Liver, excl. cancer.

Digestive, other.

Genitourinary.

I1l-defined symptoms.

All other, natural.

Violent.

130 N.dk

Source
Statistics Denmark, National board of health provided original data. Michael Andersson grouped
the causes of death.

See Also

thoro, gmortDK

Examples

data(mortDK)

N.dk Population size in Denmark

Description

The population size at 1st January in ages 0-99.

Usage
data(N.dk)

Format

A data frame with 7200 observations on the following 4 variables.

sex Sex, 1:males, 2:females
A Age. 0:0, 1:1, ..., 98:98, 99:99+
P Year

N Number of persons alive at 1st January year P

Source

http://www.statistikbanken.dk/statbank5a/SelectTable/omrade@.asp?SubjectCode=02&
PLanguage=1&ShowNews=0FF

Examples

data(N.dk)

str(N.dk)

with(N.dk,addmargins(tapply(N,list(P,sex),sum),2))
with(subset(N.dk,P==max(P)),addmargins(tapply(N,list(A,sex),sum)))

http://www.statistikbanken.dk/statbank5a/SelectTable/omrade0.asp?SubjectCode=02&PLanguage=1&ShowNews=OFF
http://www.statistikbanken.dk/statbank5a/SelectTable/omrade0.asp?SubjectCode=02&PLanguage=1&ShowNews=OFF

N2Y 131

N2Y Create risk time ("Person-Years") in Lexis triangles from population
count data.

Description

Data on population size at equidistant dates and age-classes are used to estimate person-time at risk
in Lexis-triangles, i.e. classes classified by age, period AND cohort (date of birth). Only works for
data where age-classes have the same width as the period-intervals.

Usage
N2Y(A, P, N,
data = NULL,
return.dfr = TRUE)
Arguments
A Name of the age-variable, which should be numeric, corresponding to the left
endpoints of the age intervals.
P Name of the period-variable, which should be numeric, corresponding to the
date of population count.
N The population size at date P in age class A.
data A data frame in which arguments are interpreted.
return.dfr Logical. Should the results be returned as a data frame (default TRUE) or as a
table.
Details

The calculation of the risk time from the population figures is done as described in: B. Carstensen:
Age-Period-Cohort models for the Lexis diagram. Statistics in Medicine, 26: 3018-3045, 2007.

The number of periods in the result is one less than the number of dates (nP=1ength(table(P)))
in the input, so the number of distinct values is 2x(nP-1), because the P in the output is coded
differently for upper and lower Lexis triangles.

The number of age-classes is the same as in the input (nA=length(table(A))), so the number of
distinct values is 2xnA, because the A in the output is coded differently for upper and lower Lexis
triangles.

In the paper "Age-Period-Cohort models for the Lexis diagram" I suggest that the risk time in the
lower triangles in the first age-class and in the upper triangles in the last age-class are computed so
that the total risk time in the age-class corresponds to the average of the two population figures for
the age-class at either end of a period multiplied with the period length. This is the method used.

132 N2Y

Value

A data frame with variables A, P and Y, representing the mean age and period in the Lexis triangles
and the person-time in them, respectively. The person-time is in units of the distance between
population count dates.

If return.dfr=FALSE a three-way table classified by the left end point of the age-classes and the
periods and a factor wh taking the values up and 1o corresponding to upper (early cohort) and lower
(late cohort) Lexis triangles.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

References

B. Carstensen: Age-Period-Cohort models for the Lexis diagram. Statistics in Medicine, 26: 3018-
3045, 2007.

See Also

splitlLexis, apc.fit

Examples

Danish population at 1 Jan each year by sex and age
data(N.dk)

An illustrative subset

(Nx <- subset(N.dk, sex==1 & A<5 & P<1975))
Show the data in tabular form

xtabs(N ~ A + P, data=Nx)

Lexis triangles as data frame

Nt <- N2Y(data=Nx, return.dfr=TRUE)

xtabs(Y ~ round(A,2) + round(P,2), data=Nt)

Lexis triangles as a 3-dim array

ftable(N2Y(data=Nx, return.dfr=FALSE))

Calculation of PY for persons born 1970 in 1972
(N.1.1972 <- subset(Nx, A==1 & P==1972)$N)

(N.2.1973 <- subset(Nx, A==2 & P==1973)$N)
N.1.1972/3 + N.2.1973/6

N.1.1972/6 + N.2.1973/3

These numbers can be found in the following plot:

Blue numbers are population size at 1 January

Red numbers are the computed person-years in Lexis triangles:
Lexis.diagram(age=c(0,5), date=c(1970,1975), int=1, coh.grid=TRUE)
with(Nx, text(P,A+0.5,paste(N),srt=90,col="blue"”))

with(Nt, text(P,A,formatC(Y,format="f" 6digits=1),col="red"))
text(1970.5, 2, "Population count 1 January", srt=90, col="blue")
text(1974.5, 2, "Person-\nyears"”, col="red")

http://bendixcarstensen.com

NArray 133

NArray Set up an array of NAs, solely from the list of dimnames

Description

Defines an array of NAs, solely from the list of dimnames

Usage

NArray(x, cells=NA)
ZArray(x, cells=0)

Arguments
X A (possibly named) list to be used as dimnames for the resulting array
cells Value(s) to fill the array

Details

This is a simple useful way of defining arrays to be used for collection of results. The point is that
everything is defined from the named list, so in the process of defining what you want to collect,
there is only one place in the program to edit. It’s just a wrapper for array. ZArray is just a wrapper
for NArray with a different default.

Value

An array with dimnames attribute x, and all values equal to cells.

Author(s)

Bendix Carstensen

Examples
ftable(
NArray(list(Aye = c("Yes"”, "Si", "Oui"),
Bee = c("Hum", "Buzz"),
Sea = c("White", "Black”, "Red"”, "Dead”))))

134 ncut

ncut Function to group a variable in intervals.

Description
Cuts a continuous variable in intervals. As opposed to cut which returns a factor, ncut returns a
numeric variable.

Usage

ncut(x, breaks, type="left"”)

Arguments
X A numerical vector.
breaks Vector of breakpoints. NA will results for values below min(breaks) if type="1left",
for values above max (breaks) if type="right" and for values outside range (breaks)
if type="mid"
type Character: one of c("left”,"right"”,"mid"), indicating whether the left, right
or midpoint of the intervals defined in breaks is returned.
Details

The function uses the base function findInterval.

Value

A numerical vector of the same length as x.

Author(s)

Bendix Carstensen, Steno Diabetes Center, <b@bxc.dk>, http://bendixcarstensen.com, with
essential input from Martyn Plummer, <martyn.plummer@r-project.org>

See Also

cut, findInterval

Examples

br <- ¢(-2,0,1,2.5)
x <= ¢(rnorm(1@), br, -3, 3)
cbind(x, l=ncut(x, breaks=br, type="1"),
m=ncut(x, breaks=br, type="m"),
r=ncut(x, breaks=br, type="r"))[order(x),]
x <= rnorm(200)
plot(x, ncut(x, breaks=br, type="1"), pch=16, col="blue", ylim=range(x))
abline(@, 1)

http://bendixcarstensen.com

nice 135

abline(v=br)
points(x, ncut(x, breaks=br, type="r"), pch=16, col="red"”)
points(x, ncut(x, breaks=br, type="m"), pch=16, col="green")

nice Nice breakpoints for axes on plots

Description

The function calls pretty for linear scale. For a log-scale nice are computed using a set of specified
number in each decade.

Usage
nice(x, log = FALSE, lpos = c(1, 2, 5), xmx = 4, ...)
Arguments
X Numerical vector to
log Logical. Is the scale logartimic?
1pos Numeric. Numbers between 1 and 10 giving the desired breakpoints in this
interval.
XMX Numeric. The maximal (absolute) power of 10 to be used for a log-scale.
Arguments passed on to pretty if Log=FALSE
Value

A vector of breakpoints.

Author(s)

Bendix Carstensen, <b@bxc.dk>, http://bendixcarstensen.com

See Also

pretty

Examples

nice(exp(rnorm(100)), log=TRUE)

http://bendixcarstensen.com

136 Ns

nickel A Cohort of Nickel Smelters in South Wales

Description

The nickel data frame has 679 rows and 7 columns. The data concern a cohort of nickel smelting
workers in South Wales and are taken from Breslow and Day, Volume 2. For comparison purposes,
England and Wales mortality rates (per 1,000,000 per annum) from lung cancer (ICDs 162 and
163), nasal cancer (ICD 160), and all causes, by age group and calendar period, are supplied in the
dataset ewrates.

Format

This data frame contains the following columns:

id: Subject identifier (numeric)
icd: ICD cause of death if dead, O otherwise (numeric)
exposure: Exposure index for workplace (numeric)
dob: Date of birth (numeric)
agelst: Age at first exposure (numeric)
agein: Age at start of follow-up (numeric)
ageout: Age at end of follow-up (numeric)

Source

Breslow NE, and Day N, Statistical Methods in Cancer Research. Volume II: The Design and
Analysis of Cohort Studies. IARC Scientific Publications, IARC:Lyon, 1987.

Examples
data(nickel)
str(nickel)

Ns Natural splines - (cubic splines linear beyond outermost knots) with
convenient specification of knots and possibility of centering, detrend-
ing and clamping.

Description

This function is partly for convenient specification of natural splines in practical modeling. The
convention used is to take the smallest and the largest of the supplied knots as boundary knots. It
also has the option of centering the effects provided at a chosen reference point as well as projecting
the columns on the orthogonal space to that spanned by the intercept and the linear effect of the
variable, and finally fixing slopes beyond boundary knots (clamping).

Ns

Usage

137

Ns(x, ref = NULL, df = NULL,

knots = NULL,

intercept = FALSE,
Boundary.knots = NULL,

Arguments

X
ref
df

knots

intercept

Boundary.knots

fixsl

detrend

Value

fixsl = c(FALSE,FALSE),

detrend = FALSE)

A variable.
Scalar. Reference point on the x-scale, where the resulting effect will be 0.
degrees of freedom.

knots to be used both as boundary and internal knots. If Boundary.knots are
given, this will be taken as the set of internal knots.

Should the intercept be included in the resulting basis? Ignored if any of ref or
detrend is given.

The boundary knots beyond which the spline is linear. Defaults to the minimum
and maximum of knots.

Specification of whether slopes beyond outer knots should be fixed to 0. FALSE
correponds to no restriction; a curve with 0 slope beyond the upper knot is ob-
tained using c (FALSE, TRUE). Ignored if ! (detrend==FALSE).

If TRUE, the columns of the spline basis will be projected to the orthogonal of
cbind(1,x). Optionally detrend can be given as a vector of non-negative num-
bers og length length(x), used to define an inner product as diag(detrend)
for projection on the orthogonal to cbind(1,x). The default is projection w.r.t.
the inner product defined by the identity matrix.

A matrix of dimension c(length(x),df) where either df was supplied or if knots were supplied, df
= length(knots) - 1 + intercept. Ns returns a spline basis which is centered at ref. Ns with
the argument detrend=TRUE returns a spline basis which is orthogonal to cbind (1, x) with respect
to the inner product defined by the positive definite matrix diag(detrend) (an assumption which
is checked). Note the latter is data dependent and therefore making predictions with a newdata
argument will be senseless.

Note

The need for this function is primarily from analysis of rates in epidemiology and demography,
where the dataset are time-split records of follow-up, and the range of data therefore rarely is of any
interest (let alone meaningful).

In Poisson modeling of rates based on time-split records one should aim at having the same number
of events between knots, rather than the same number of observations.

138 Ns

Author(s)

Bendix Carstensen <b@bxc.dk>, Lars Jorge DV’iaz, Steno Diabetes Center Copenhagen.

Examples

require(splines)
require(stats)
require(graphics)

ns(women$height, df = 3)
Ns(women$height, knots=c(63,59,71,67))

Gives the same results as ns:
summary(lm(weight ~ ns(height, df
summary(lm(weight ~ Ns(height, df

3), data = women))
3), data = women))

Get the diabetes data and set up as Lexis object
data(DMlate)
DMlate <- DMlate[sample(1:nrow(DMlate),500),]
dml <- Lexis(entry = list(Per=dodm, Age=dodm-dobth, DMdur=0),
exit = list(Per=dox),
exit.status = factor(!is.na(dodth),labels=c("DM","Dead")),
data = DMlate)

Split follow-up in 1-year age intervals
dms <- splitlLexis(dml, time.scale="Age", breaks=0:100)
summary(dms)

Model age-specific rates using Ns with 6 knots
and period-specific RRs around 2000 with 4 knots
with the same number of deaths between each pair of knots
n.kn <- 6
(a.kn <- with(subset(dms,lex.Xst=="Dead"),
quantile(Agetlex.dur, probs=(1:n.kn-0.5)/n.kn)))
n.kn <- 4
(p.kn <- with(subset(dms, lex.Xst=="Dead"),
quantile(Per+lex.dur, probs=(1:n.kn-0.5)/n.kn)))
ml <- glm(lex.Xst=="Dead" ~ Ns(Age, kn=a.kn) +
Ns(Per, kn=p.kn, ref=2000),
offset = log(lex.dur),
family = poisson,
data = dms)

Plot estimated age-mortality curve for the year 2005 and knots chosen:
nd <- data.frame(Age=seq(40,100,0.1), Per=2005, lex.dur=1000)
par(mfrow=c(1,2))
matplot(nd$Age, ci.pred(m1, newdata=nd),
type="1", lwd=c(3,1,1), 1lty=1, col="black”, log="y",
ylab="Mortality rates per 1000 PY", xlab="Age (years)", las=1, ylim=c(1,1000))
rug(a.kn, lwd=2)

Clamped Age effect to the right of rightmost knot.

occup 139

ml.c <- glm(lex.Xst=="Dead” ~ Ns(Age, kn=a.kn, fixsl=c(FALSE,TRUE)) +
Ns(Per, kn=p.kn, ref=2000),
offset = log(lex.dur),
family = poisson,
data = dms)

Plot estimated age-mortality curve for the year 2005 and knots chosen.
matplot(nd$Age, ci.pred(ml.c, newdata=nd),

type="1", lwd=c(3,1,1), lty=1, col="black"”, log="y",

ylab="Mortality rates per 1000 PY", xlab="Age (years)"”, las=1, ylim=c(1,1000))
rug(a.kn, lwd=2)

par(mfrow=c(1,1))

Including a linear Age effect of 0.05 to the right of rightmost knot.
ml.1l <- glm(lex.Xst=="Dead” ~ Ns(Age, kn=a.kn, fixsl=c(FALSE,TRUE)) +
Ns(Per, kn=p.kn, ref=2000),
offset = log(lex.dur) + pmax(Age, max(a.kn)) * 0.05,
family = poisson,
data = dms)

Plot estimated age-mortality curve for the year 2005 and knots chosen.
nd <- data.frame(Age=40:100,Per=2005,lex.dur=1000)
matplot(nd$Age, ci.pred(m1.1l, newdata=nd),
type="1", lwd=c(3,1,1), 1lty=1, col="black”, log="y",
ylab="Mortality rates per 1000 PY", xlab="Age (years)", las=1, ylim=c(1,1000))
rug(a.kn, lwd=2)

occup A small occupational cohort

Description
This is the data that is behind the illustrative Lexis diagram in Breslow & Day’s book on case-control
studies.

Usage

data(occup)

Format

A data frame with 13 observations on the following 4 variables.

AoE a numeric vector, Age at Entry
DoE a numeric vector, Date of entry
DoX a numeric vector, Date of eXit

Xst eXit status D-event, W-withdrawal, X-censoring

140 paths.Lexis

References

Breslow & Day: Statistical Methods in Cancer Research, vol 1: The analysis of case-control studies,
figure 2.2, p. 48.

Examples

data(occup)
1x <- Lexis(entry = list(per=DoE, age=AoE),
exit = list(per=DoX),
entry.status = "W",
exit.status = Xst,
data = occup)
plot(1x)
Split follow-up in 5-year classes
sx <- splitlexis(1x, seq(1940,1960,5), "per”)
sx <- splitLexis(sx, seq(40, 60,5), "age")
plot(sx)

Plot with a bit more paraphernalia and a device to get

the years on the same physical scale on both axes

ypi <- 2.5 # Years per inch

dev.new(height=15/ypi+1, width=20/ypi+1) # add an inch in each direction for

par(mai=c(3,3,1,1)/4, mgp=c(3,1,0)/1.6) # the margins set in inches by mai=

plot(sx,las=1,col="black"”,lty.grid=1,1lwd=2, type="1",
x1im=c(1940,1960),ylim=c(40,55),xaxs="1",yaxs="1i",yaxt="n",
xlab="Calendar year", ylab="Age (years)")

axis(side=2, at=seq(40,55,5), las=1)

points(sx,pch=c(NA,16)[(sx$lex.Xst=="D")+1])

box ()

Annotation with the person-years

PY.ann.Lexis(sx, cex=0.8)

paths.Lexis Generate paths travelled through a Lexis multistate model data frame.

Description

Paths visited in a Lexis multistate model.

Usage
S3 method for class 'Lexis'
paths(Lx, dfr = FALSE, ...)
Arguments
Lx A Lexis object
dfr Logical. Should results be returned as a data frame with columns lex.id and
path?

Arguments passed on. Ignored

pc.lines 141

Value

A factor with levels describing each person’s path through states. It is of length length(nid(Lx)),
named by the (character) values of Lx$1lex. id. If dfr is TRUE a two-column data frame is returned.

Author(s)

Bendix Carstensen, <b@bxc.dk>, http://bendixcarstensen.com

See Also

cutlLexis, mcutlLexis, rcutlLexis, nid, Lexis

Examples

a simple example
example(DMlate)

summary (dmi)

str(paths.Lexis(dmi, dfr = TRUE))
str(pathD <- paths.Lexis(dmi))
cbind(addmargins(table(pathD)))

#

an example with recurring events
example(steno2)

summary (L4)

str(pathS <- paths.Lexis(L4))
cbind(addmargins(table(pathS)))

pc.lines Plot period and cohort effects in an APC-frame.

Description

When an APC-frame has been produced by apc. frame, this function draws curves or points in the
period/cohort part of the frame.

Usage

pc.points(x, y, ...)
pc.lines(x, y, ...)
pc.matpoints(x, y, ...)
pc.matlines(x, y, ...)
pc.matshade(x, y, ...)
cp.points(x, y, ...)
cp.lines(x, y, ...)
cp.matpoints(x, vy, ...)
cp.matlines(x, vy, ...)
cp.matshade(x, y, ...)

http://bendixcarstensen.com

142 pctab
Arguments
X vector of x-coordinates.
y vector or matrix of y-coordinates.
Further parameters to be transmitted to points, lines, matpoints, matlines or mat-
shade used for plotting curves in the calendar time realm of a graph generated
by apc.frame
Details
Since the Age-part of the frame is referred to by its real coordinates plotting in the calendar time
part requires translation and scaling to put things correctly there, that is done by the functions
pc.points etc.
The functions cp.points etc. are just synonyms for these, in recognition of the fact that you can
never remember whether it is "pc" or "cp".
Value
The functions return nothing.
Author(s)
Bendix Carstensen, Steno Diabetes Center Copenhagen, http://bendixcarstensen.com
See Also
apc.frame, apc.fit, plot.apc, lines.apc
pctab Create percentages in a table
Description
Computes percentages and a margin of totals along a given margin of a table.
Usage
pctab(TT, margin = length(dim(TT)), dec=1)
Arguments
1T A table or array object
margin Which margin should be the the total?
dec How many decimals should be printed? If O or FALSE nothing is printed

http://bendixcarstensen.com

plot.apc 143

Value

A table of percentages, where all dimensions except the one specified margin has two extra levels
named "All" (where all entries are 100) and "N". The function prints the table with dec decimals.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://bendixcarstensen.com.

See Also

addmargins

Examples

Aye <- sample(c("Yes","Si","Oui"), 177, replace=TRUE)

Bee <- sample(c("Hum”,"Buzz"), 177, replace=TRUE)

Sea <- sample(c("White","Black"”,"Red”,"Dead"), 177, replace=TRUE)
A <- table(Aye, Bee, Sea)

A

ftable(pctab(A))

ftable(pctab(addmargins(A, 1), 3))

round(ftable(pctab(addmargins(A, 1), 3), row.vars=3), 1)

plot.apc Plot the estimates from a fitted Age-Period-Cohort model

Description

This function plots the estimates created by apc.fit in a single graph. It just calls apc.frame
after computing some sensible values of the parameters, and subsequently plots the estimates using

apc.lines.
Usage

S3 method for class 'apc'

plot(x, r.txt="Rate"”, ...)

apc.plot(x, r.txt="Rate”, ...)

Arguments

X An object of class apc.

r.txt The text to put on the vertical rate axis.

Additional arguments passed on to apc.lines.

Details

plot.apc is just a wrapper for apc.plot.

http://bendixcarstensen.com

144 plot.Lexis

Value

A numerical vector of length two, with names c("cp.offset”,"RR.fac"). The first is the offset
for the cohort period-axis, the second the multiplication factor for the rate-ratio scale. Therefore,

if you want to plot at (x,y) in the right panel, use (x-res["cp.offset"],y/res["RR.fac"])

=(x-res[1],y/res[2]). This vector should be supplied for the parameter frame.par to apc.lines
if more sets of estimates is plotted in the same graph, however see cp.points.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://bendixcarstensen.com

See Also

apc.lines, lines.apc, apc.frame, apc.fit

Examples

data(lungDK)
apcl <- apc.fit(transform(lungDK,
A=Ax, P =Px, Y =Y/10%5),
ref.c = 1920)
fp <- apc.plot(apcl)
apc.lines(apcl, frame.par=fp, drift=1.01, col="red"”)
for(i in 1:11)
apc.lines(apcl, frame.par=fp, drift=1+(i-6)/100, col=rainbow(12)[i])

plot.Lexis Lexis diagrams

Description

The follow-up histories represented by a Lexis object can be plotted using one or two dimensions.
The two dimensional plot is a Lexis diagram showing follow-up time simultaneously on two time
scales.

Usage

S3 method for class 'Lexis'
plot(x=Lexis(entry=list(Date=1900,Age=0), exit=1list(Age=0)),

time.scale = NULL, type="1", breaks="lightgray", ...)
S3 method for class 'Lexis'
points(x, time.scale = options()[["Lexis.time.scale"]] , ...)
S3 method for class 'Lexis'
lines(x, time.scale = options()[["Lexis.time.scale"]], ...)

S3 method for class 'Lexis'
PY.ann(x, time.scale = options()[["Lexis.time.scale"]], digits=1, ...)

http://bendixcarstensen.com

plot.Lexis 145

Arguments

X An object of class Lexis. The defaultis abogus Lexis object, so that plot.Lexis
can be called without the first argument and still produce a(n empty) Lexis di-
agram. Unless arguments x1im and ylim are given in this case the diagram is
looking pretty daft.

time.scale A vector of length 1 or 2 giving the time scales to be plotted either by name or
numerical order

nn

type Character indication what to draw: "n" nothing (just set up the diagram), "1" -

nn

liefelines, "p" - endpoints of follow-up, "b" - both lifelines and endpoints.

breaks a string giving the colour of grid lines to be drawn when plotting a split Lexis
object. Grid lines can be suppressed by supplying the value NULL to the breaks
argument

digits Numerical. How many digits after the demimal points should be when plotting
the person-years.
Further graphical parameters to be passed to the plotting methods.
Grids can be drawn (behind the life lines) using the following parameters in
plot:

» grid If logical, a background grid is set up using the axis ticks. If a list,
the first component is used as positions for the vertical lines and the last as
positions for the horizontal. If a nunerical vector, grids on both axes are set
up using the distance between the numbers.

e col.grid="lightgray" Color of the background grid.
e 1ty.grid=2 Line type for the grid.
* coh.grid=FALSE Should a 45 degree grid be plotted?

Details

The plot method for Lexis objects traces “life lines” from the start to the end of follow-up. The
points method plots points at the end of the life lines.

If time.scale is of length 1, the life lines are drawn horizontally, with the time scale on the X axis
and the id value on the Y axis. If time.scale is of length 2, a Lexis diagram is produced, with
diagonal life lines plotted against both time scales simultaneously.

If 1ex has been split along one of the time axes by a call to splitlLexis, then vertical or horizontal
grid lines are plotted (on top of the life lines) at the break points.

PY.ann writes the length of each (segment of) life line at the middle of the line. Not advisable to
use with large cohorts. Another example is in the example file for occup.

Author(s)

Martyn Plummer

See Also

Lexis, splitlLexis

146 plotCIF

Examples

A small bogus cohort
xcoh <- structure(list(id = c("A", "B", "C"),
birth = c("14/07/1952", "01/04/1957", "10/06/1987"),
entry = c("04/08/1965", "08/09/1972", "23/12/1991"),
exit = c("27/06/1997", "23/05/1995", "24/07/1998"),
fail = c(1, 0, 1)),
.Names = c("id", "birth", "entry”, "exit", "fail"),
row.names = c("1", "2", "3"),
class = "data.frame"”)

Convert the character dates into numerical variables (fractional years)
xcoh$bt <- cal.yr(xcoh$birth, format="%d/%m/%Y")
xcoh$en <- cal.yr(xcoh$entry, format="%d/%m/%Y")
xcoh$ex <- cal.yr(xcoh$exit , format="%d/%m/%Y")

See how it looks
xcoh

Define as Lexis object with timescales calendar time and age
Lcoh <- Lexis(entry = list(per=en),
exit = list(per=ex, age=ex-bt),
exit.status = fail,
data = xcoh)

Default plot of follow-up
plot(Lcoh)

Show follow-up time
PY.ann(Lcoh)

Show exit status

plot(Lcoh, type="b")

Same but failures only

plot(Lcoh, type="b", pch=c(NA,16)[Lcoh$fail+1])

With a grid and deaths as endpoints

plot(Lcoh, grid=0:10x10, col="black"”)

points(Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1])

With a lot of bells and whistles:

plot(Lcoh, grid=0:20x5, col="black”, xaxs="i", yaxs="i",
x1im=c(1960,2010), ylim=c(0,50), lwd=3, las=1)

points(Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1], col="red", cex=1.5)

plotCIF Plotting Aalen-Johansen curves for competing events

Description

Function plotCIF plots, for one or more groups, the cumulative incidence curves for a selected
event out of two or more competing events. Function stackedCIF plots, for one group or popula-

plotCIF

147

tion, the cumulative incidence curves for two or more competing events such that the cumulative
incidences are stacked upon each other. The CIFs are are estimated by the Aalen-Johansen method.

Usage

S3 method for class 'survfit'
plotCIF(x, event = 1,

xlab = "Time",
ylab = "Cumulative incidence”,
ylim = c(o, 1),

1ty =1,

col = "black”, ...)

S3 method for class 'survfit'
stackedCIF(x, group =1,

Arguments

X

event

group

col

fill

xlab
ylab
ylim
1ty

Details

col = "black”,
fill = "white",
ylim = c(9,1),
xlab = "Time",
ylab = "Cumulative incidence”, ...)

An object of class survfit, the type of event in Surv() being "mstate"; the
first level of the event factor represents censoring and the remaining ones the
alternative competing events.

Determines the event for which the cumulative incidence curve is plotted by
plotCIF.

An integer showing the selected level of a possible grouping factor appearing in
the model formula in survfit when plotting by stackedCIF

A vector specifying the plotting color(s) of the curve(s) for the different groups
in plotCIF- default: all "black".

A vector indicating the colours to be used for shading the areas pertinent to the
separate outcomes in stackedCIF - default: all "white".

Label for the x-axis.
Label for the y-axis.
Limits of the y-axis.

A vector specifying the line type(s) of the curve(s) for the different groups -
default: all 1 (=solid).

Further graphical parameters to be passed.

The order in which the curves with stackedCIF are piled upon each other is the same as the ordering
of the values or levels of the competing events in the pertinent event variable. The ordering can be
changed by permuting the levels as desired using function Relevel, after which survfit is called
with the relevelled event variable in Surv ()

148 plotCIF

Value

No value is returned but a plot is produced as a side-effect.

Note

Aalen-Johansen curves for competing events in several groups can also be plotted by function
plot.survfit of the survival library as well as by some functions in other packages covering
analysis of time-to-event data.

Author(s)

Esa Laara, <esa.laara@oulu.fi>

References

Putter, H., Fiocco, M., Geskus, R.B. (2007). Tutorial in biostatistics: competing risks and multi-
state models. Statistics in Medicine, 26: 2389-2430.

See Also

survfit, plot, plot.survfit.

Examples

library(survival) # requires version 2.39-4 or later
head(mgus1)

Aalen-Johansen estimates of CIF are plotted by sex for two
competing events: (1) progression (pcm), and (2) death, in
a cohort of patients with monoclonal gammopathy.

The data are actually covering transitions from pcm to death, too,

for those entering the state of pcm. Such patients have two rows

in the data frame, and in their 2nd row the 'start' time is

the time to pcm (in days).

In our analysis we shall only include those time intervals with value 0
for variable 'start'. Thus, the relevant follow-up time is represented

by variable 'stop' (days). For convenience, days are converted to years.

fitCI <- survfit(Surv(stop/365.25, event, type="mstate") ~ sex,
data= subset(mgusl, start==0))

par(mfrow=c(1,2))

plotCIF(fitCI, event = 1, col = c("red”, "blue"),
main = "Progression”, xlab="Time (years)")

text(38, .15, "Men"”, pos = 2)

text(38, 0.4, "Women", pos = 2)

plotCIF(fitCI, event = 2, col = c("red”, "blue"),
main = "Death”, xlab="Time (years)")

text(38, 0.8, "Men", pos = 2)

text(38, 0.5, "Women”, pos = 2)

plotEst

149

par(mfrow=c(1,2))

stackedCIF(fitCI, group = 1, fill = c("gray80", "gray90"),
main = "Women"”, xlab="Time (years)")

text(36, 0.15, "PCM", pos = 2)

text(36, 0.6, "Death”, pos = 2)

stackedCIF(fitCI, group = 2, fill = c("gray80"”, "gray9e"),
main = "Men”, xlab="Time (years)”)

text(39, 0.10, "PCM", pos = 2)

text(39, 0.6, "Death”, pos = 2)

plotEst Plot estimates with confidence limits (forest plot)

Description

Plots parameter estimates with confidence intervals, annotated with parameter names. A dot is plot-
ted at the estimate and a horizontal line extending from the lower to the upper limit is superimposed.

Usage

plotEst(ests,

y_

txt
txtpos

ylim =

x1lab
xtic

dim(ests)[1]:1,
rownames(ests),

Y,
range(y)-c(0.5,0),

nn
’

nice(ests[!is.na(ests)], log = xlog),

xlim = range(xtic),
xlog = FALSE,
pch = 16,
cex 1,
lwd = 2,
col "black”,
col.txt = "black”,
font.txt =1,
col.lines = col,
col.points = col,
vref = NULL,
grid = FALSE,
col.grid = gray(0.9),
restore.par = TRUE,

linesEst(ests, y = dim(ests)[1]:1, pch = 16, cex = 1, lwd = 2,
col="black"”, col.lines=col, col.points=col, ...)

pointsEst(ests, y = dim(ests)[1]:1, pch = 16, cex =
col="black"”, col.lines=col, col.points=col, ...)

150

Arguments

ests

y
txt

txtpos
ylim

xlab

xtic

x1lim

xlog

pch

cex

col

col. txt
font. txt
col.lines
col.points
lwd

vref

grid

col.grid

restore.par

Details

plotEst

Matrix with three columns: Estimate, lower limit, upper limit. If a model object
is supplied, ci.lin is invoked for this object first.

Vertical position of the lines.

Annotation of the estimates. Either a character vector or an expression vector.
Vertical position of the text. Defaults to y.

Extent of the vertical axis.

Annotation of the horizontal axis.

Location of tickmarks on the x-axis.

Extent of the x-axis.

Should the x-axis be logarithmic?

What symbol should be used?

Expansion of the symbol.

Colour of the points and lines.

Colour of the text annotating the estimates.

Font for the text annotating the estimates.

Colour of the lines.

Colour of the symbol.

Thickness of the lines.

Where should vertical reference line(s) be drawn?

If TRUE, vertical gridlines are drawn at the tickmarks. If a numerical vector is
given vertical lines are drawn at grid.

Colour of the vertical gridlines

Should the graphics parameters be restored? If set to FALSE the coordinate sys-
tem will still be available for additional plotting, and par ("mai") will still have
the very large value set in order to make room for the labelling of the estimates.

Arguments passed on to ci.lin when a model object is supplied as ests.

plotEst makes a news plot, whereas linesEst and pointsEst (identical functions) adds to an

existing plot.

non

If a model object of class "glm"”, "coxph”, "clogistic” or "gnlm" is supplied the argument x1log
defaults to TRUE, and exponentiated estimates are extracted by default.

Value

NULL

Author(s)

Bendix Carstensen, <b@bxc.dk>, http://bendixcarstensen.com

http://bendixcarstensen.com

plotevent 151

See Also

ci.lin

Examples

Bogus data and a linear model

f <- factor(sample(letters[1:5], 100, replace=TRUE))
X <= rnorm(100)

y <- 5+ 2 x as.integer(f) + 0.8 x x + rnorm(100) * 2
ml <-1Im(y~f)

Produce some confidence intervals for contrast to first level
(cf <= ci.lin(m1, subset=-1)[,-(2:4)])

Plots with increasing amounts of bells and whistles
par(mfcol=c(3,2), mar=c(3,3,2,1))
plotEst(cf)
plotEst(cf, grid=TRUE, cex=2, lwd=3)
plotEst(cf, grid=TRUE, cex=2, col.points="red"”, col.lines="green")
plotEst(cf, grid=TRUE, cex=2, col.points="red"”, col.lines="green",
xlog=TRUE, xtic=c(1:8), x1lim=c(0.8,6))
rownames(cf)[1] <- "Contrast to fa:\n fb"
plotEst(cf, grid=TRUE, cex=2, col.points=rainbow(4),
col.lines=rainbow(4), vref=1)
#
etxt <- expression("Plain text, qouted”,
"combined with maths:"*sqrt(a)*philc],
frdx" Hb"*A[1]1[c],
effrex" kg/"*m"2)
plotEst(cf, txt=etxt, grid=TRUE, cex=2, col.points=rainbow(4),
col.lines =rainbow(4), vref=1)

plotevent Plot Equivalence Classes

Description
For interval censored data, segments of times between last.well and first.ill are plotted for each
conversion in the data. It also plots the equivalence classes.

Usage

plotevent(last.well, first.ill, data)

Arguments
last.well Time at which the individuals are last seen negative for the event
first.ill Time at which the individuals are first seen positive for the event

data Data with a transversal shape

152 poisreg

Details

last.well and first.ill should be written as character in the function.

Value

Graph

Author(s)

Delphine Maucort-Boulch, Bendix Carstensen, Martyn Plummer

References

Carstensen B. Regression models for interval censored survival data: application to HIV infection
in Danish homosexual men.Stat Med. 1996 Oct 30;15(20):2177-89.

Lindsey JC, Ryan LM. Tutorial in biostatistics methods for interval-censored data.Stat Med. 1998
Jan 30;17(2):219-38.

See Also

Icens

poisreg Family Object for Poisson Regression

Description

The poisreg family allows Poisson regression models to be fitted using the glm function.

In a Poisson regression model, we assume that the data arise from a Poisson process. We observe
D disease events in follow up time Y and wish to estimate the incidence rate, which is assumed
to be constant during the follow-up period for any individual. The incidence rate varies between
individuals according to the predictor variables and the link function in the model specification.

When using the poisreg family in the glm function, the response should be specified as a two-
column matrix with the first column giving the number of events (D) and the second column giving
the observation time (Y). This is similar to the binomial family for which a two-column outcome
can be used representing the number of successes and the number of failures.

Usage
poisreg(link = "log")

Arguments

link a specification for the model link function. The poisreg family accepts the links
identity, log and inverse.

poisreg 153

Value

An object of class "family". See family for details.

The family name, represented by the element "family” in the returned object, is "poisson” and
not "poisreg”. This is necessary to prevent the summary.glm function from estimating an overdis-
persion parameter (which should be fixed at 1) and therefore giving incorrect standard errors for the
estimates.

Note

When using the log link, Poisson regression can also be carried out using the poisson family by
including the log follow-up time log(Y) as an offset. However this approach does not generalize
to other link functions. The poisreg family allows more general link functions including additive
risk models with poisreg(link = "identity").

See Also
glm, family.

Examples

Estimate incidence rate of diabetes in Denmark (1996-2015) by

age and sex

data(DMepi)

DMepis$agegrp <- cut(DMepi$A, seq(from=0, to=100, by=5))

inc.diab <- glm(cbind(X, Y.nD) ~ -1 + agegrp + sex, family=poisreg,
data=DMepi)

The coefficients for agegrp are log incidence rates for men in each

age group. The coefficient for sex is the log of the female:male

incidence rate ratio.

summary (inc.diab)

Smooth function with non-constant M/F RR:
requireNamespace("mgcv")
library(mgcv)
gam.diab <- gam(cbind(X, Y.nD) ~ s(A,by=sex) + sex,
family=poisreg,
data=DMepi)

There is no need/use for Y.nD in prediction data frames:
nM <- data.frame(A=20:90, sex="M")
nF <- data.frame(A=20:90, sex="F")

Rates are returned in units of (1 year)”*-1, so we must scale the
rates by hand:
matshade(nM$A, cbind(ci.pred(gam.diab, nM)*1000,
ci.pred(gam.diab, nF)*1000,
ci.exp(gam.diab,list(nM,nF))),
plot=TRUE, col=c("blue”,"red"”,"black"),
log="y", xlab="Age", ylab="DM incidence rates per 1000 / M vs. F RR")
abline(h=1)

154 projection.ip

pr Diabetes prevance as of 2010-01-01 in Denmark

Description

Diabetes prevalence as of 2010-01-01 in Denmark in 1-year age classes by sex.

Usage

data("pr")

Format
A data frame with 200 observations on the following 4 variables.
A Numeric, age, 0-99
sex Sex, a factor with levels M F

X Number of diabetes patients

N Population size

Examples

data(pr)
str(pr)

projection.ip Projection of columns of a matrix.

Description

Projects the columns of the matrix M on the space spanned by the columns of the matrix X, with
respect to the inner product defined by weight: <x|y>=sum(x*wxy).

Usage

projection.ip(X, M, orth = FALSE, weight = rep(1, nrow(X)))

Arguments
X Matrix defining the space to project onto.
M Matrix of columns to be projected. Must have the same number of rows as X.
orth Should the projection be on the orthogonal complement to span(X)?

weight Weights defining the inner product. Numerical vector of length nrow(X).

rateplot 155

Value

A matrix of full rank with columns in span(X)

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://bendixcarstensen. com, with help from Peter
Dalgaard.

See Also
detrend
rateplot Functions to plot rates from a table classified by age and calendar
time (period)
Description

Produces plots of rates versus age, connected within period or cohort (Aplot), rates versus pe-
riod connected within age-groups (Pplot) and rates and rates versus date of birth cohort (Cplot).
rateplot is a wrapper for these, allowing to produce the four classical displays with a single call.

Usage
rateplot(rates,
which = c("ap”,"ac","pa","ca"),
age = as.numeric(dimnames(rates)[[1]]),
per = as.numeric(dimnames(rates)[[2]1]),
grid = FALSE,
a.grid = grid,
p.grid = grid,
c.grid = grid,
ygrid = grid,
col.grid = gray(0.9),
a.lim = range(age, na.rm=TRUE) + c(@,diff(range(age))/30),
p.lim = range(per, na.rm=TRUE) + c(@,diff(range(age))/30),
c.lim = NULL,
ylim = range(rates[rates>0], na.rm=TRUE),
at = NULL,
labels = paste(at),
a.lab = "Age at diagnosis”,
p.lab = "Date of diagnosis”,
c.lab = "Date of birth",
ylab = "Rates”,
type = "1",
lwd = 2,

1ty

1,

http://bendixcarstensen.com

156 rateplot

log.ax = "y",
las = 1,
ann = FALSE,

a.ann = ann,
p.ann = ann,
c.ann = ann,
xannx = 1/20,
cex.ann = 0.8,
a.thin = seq(1, length(age), 2),
p.thin = seq(1, length(per), 2),
c.thin = seq(2, length(age) + length(per) - 1, 2),
col = par("fg"),
a.col = col,
p.col = col,
c.col = col,

Aplot(rates, age = as.numeric(dimnames(rates)[[1]1]),
per = as.numeric(dimnames(rates)[[2]]), grid = FALSE,
a.grid = grid, ygrid = grid, col.grid = gray(0.9),

a.lim = range(age, na.rm=TRUE), ylim = range(rates[rates>0], na.rm=TRUE),
at = NULL, labels = paste(at), a.lab = names(dimnames(rates))[1],
ylab = deparse(substitute(rates)), type = "1", lwd = 2, 1ty =1,
col = par("fg"), log.ax = "y", las = 1, c.col = col, p.col = col,
c.ann = FALSE, p.ann = FALSE, xannx = 1/20, cex.ann = 0.8,
c.thin = seq(2, length(age) + length(per) - 1, 2),
p.thin = seq(1, length(per), 2), p.lines = TRUE,
c.lines = !p.lines, ...)

Pplot(rates, age = as.numeric(dimnames(rates)[[11]),
per = as.numeric(dimnames(rates)[[2]]), grid = FALSE,
p.grid = grid, ygrid = grid, col.grid = gray(0.9),
p.lim = range(per, na.rm=TRUE) + c(@,diff(range(per))/30),
ylim = range(rates[rates>0], na.rm=TRUE), p.lab = names(dimnames(rates))[2],
ylab = deparse(substitute(rates)), at = NULL, labels = paste(at),
type = "1", 1lwd = 2, 1ty = 1, col = par("fg"), log.ax = "y",
las = 1, ann = FALSE, cex.ann = 0.8, xannx = 1/20,
a.thin = seq(1, length(age), 2), ...)

Cplot(rates, age = as.numeric(rownames(rates)),
per = as.numeric(colnames(rates)), grid = FALSE,
c.grid = grid, ygrid = grid, col.grid = gray(0.9),
c.lim = NULL, ylim = range(rates[rates>0], na.rm=TRUE),
at = NULL, labels = paste(at), c.lab = names(dimnames(rates))[2],
ylab = deparse(substitute(rates)), type = "1", lwd = 2, 1ty =1,
col = par("fg"), log.ax = "y", las = 1, xannx = 1/20, ann = FALSE,
cex.ann = 0.8, a.thin = seq(1, length(age), 2), ...)

rateplot

Arguments

rates

which

age

per

grid
a.grid

p.grid
c.grid
ygrid
col.grid
a.lim
p.lim
c.lim
ylim
at
labels
a.lab
p.lab
c.lab
ylab
type
lwd
1ty

log.ax

las
ann
a.ann
p.ann

c.ann

157

A two-dimensional table (or array) with rates to be plotted. It is assumed that
the first dimension is age and the second is period.

n on n o n non n o n

A character vector with elements from c("ap”, "ac”, "apc”,"pa","ca"), indi-
cation which plots should be produced. One plot per element is produced. The
first letter indicates the x-axis of the plot, the remaining which groups should be
connected, i.e. "pa"” will plot rates versus period and connect age-classes, and
"apc” will plot rates versus age, and connect both periods and cohorts.

Numerical vector giving the means of the age-classes. Defaults to the rownames
of rates as numeric.

Numerical vector giving the means of the periods. Defaults to the columnnames
of rates as numeric.

Logical indicating whether a background grid should be drawn.

Logical indicating whether a background grid on the age-axis should be drawn.
If numerical it indicates the age-coordinates of the grid.

do. for the period.

do. for the cohort.

do. for the rate-dimension.

The colour of the grid.

Range for the age-axis.

Range for the period-axis.

Range for the cohort-axis.

Range for the y-axis (rates).

Position of labels on the y-axis (rates).

Labels to put on the y-axis (rates).

Text on the age-axis. Defaults to "Age".

Text on the period-axis. Defaults to "Date of diagnosis".
Text on the cohort-axis. Defaults to "Date of birth".

Text on the rate-axis. Defaults to the name of the rate-table.
How should the curves be plotted. Defaults to "1".

Width of the lines. Defaults to 2.

Which type of lines should be used. Defaults to 1, a solid line.

Character with letters from "apcyr”, indicating which axes should be logarith-

non

mic. "y" and "r" both refer to the rate scale. Defaults to "y".
see par.

Should the curves be annotated?

Logical indicating whether age-curves should be annotated.
do. for period-curves.

do. for cohort-curves.

158

xannx
cex.ann
a.thin
p.thin
c.thin
col
a.col
p.col
c.col
p.lines

c.lines

Details

rateplot

The fraction that the x-axis is expanded when curves are annotated.
Expansion factor for characters annotating curves.

Vector of integers indicating which of the age-classes should be labelled.
do. for the periods.

do. for the cohorts.

Colours for the curves.

Colours for the age-curves.

do. for the period-curves.

do. for the cohort-curves.

Should rates from the same period be connected?

Should rates from the same cohort be connected?

Additional arguments pssed on to matlines when plotting the curves.

Zero values of the rates are ignored. They are neiter in the plot nor in the calculation of the axis

ranges.

Value

NULL. The function is used for its side-effect, the plot.

Author(s)

Bendix Carstensen, Steno Diabetes Center, http://bendixcarstensen.com

See Also

apc.frame

Examples

data(blcalT)
attach(blcalT)

Table of rates:

bl.rate <- tapply(D, list(age,period), sum) /
tapply(Y, list(age,period), sum)

bl.rate

The four classical plots:
par(mfrow=c(2,2))
rateplot(bl.ratex106)

The labels on the vertical axis could be nicer:
rateplot(bl.ratex10%6, at=10*(-1:3), labels=c(0.1,1,10,100,1000))

http://bendixcarstensen.com

rcutLexis 159

More bells an whistles

par(mfrow=c(1,3), mar=c(3,3,1,1), oma=c(0,3,0,0), mgp=c(3,1,0)/1.6)

rateplot(bl.rate*x10%6, ylab="", ann=TRUE, which=c("AC","PA","CA"),
at=107(-1:3), labels=c(0.1,1,10,100,1000),
col=topo.colors(11), cex.ann=1.2)

rcutlLexis A function to cut follow-up at intermediate event times.

Description

Cuts follow-up at intermediate event times, multiple events per person are allowed, as well as re-
currences of the sme type of event. The resulting states only refer to the last assumed state, unlike
the result from mcutLexis.

Usage

rcutLexis(Lx, cut,
timescale = 1,
precursor.states = transient(Lx))

Arguments
Lx A Lexis object to be amended,.
cut A data frame with columns lex.id, cut (event times) and new.state (event
type, character)
timescale What time scale do values in cut$cut refer to. Numeric or character.

precursor.states
an optional vector of states to be considered as "less severe" than new.state.
See Details in the documentation of cutLexis

Value

A Lexis object with follow-up cut at the event times supplied in cut

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

See Also

cutLexis, mcutLexis, addCov.Lexis, Lexis, splitlLexis

http://bendixcarstensen.com

160

Examples

df <- data.frame(

Relevel

lex.id = rep(c(3, 7), c(3, 5)))

df$new.state <- sample(LETTERS[2:4], 8, r = TRUE)

df$cut <- round(r
df

Lx <- Lexis(exit
id
exit.status

Lx
rcutLexis(Lx, df,

unif(8) * 100) + 1

list(time=c(89, 97)),
c@3, N,
= factor(c("A", "X")))

pre = "A")

Relevel

Reorder and combine levels of a factor

Description

The levels of a factor are re-ordered so that the levels specified by ref appear first and remaining
levels are moved down. This is useful for contr.treatment contrasts which take the first level
as the reference. Factor levels may also be combined; two possibilities for specifying this are
supported: hard coding or table look-up.

Usage

S3 method for class 'factor'

Relevel(x, ref

Arguments

X

ref

first
collapse

xlevels

, first = TRUE, collapse="+",

xlevels=TRUE, nogroup=TRUE, ...)

A(n unordered) factor

Vector, list or data frame, array, matrix or table.

If ref is a vector (integer or character), it is assumed it contains the names or
numbers of levels to be the first ones; non mentioned levels are kept.

If ref is a list (but not a data frame), factor levels mentioned in each list element
are combined. If the list is named the names are used as new factor levels,
otherwise new level names are constructed from the old.

If ref is a data frame or 2-dimensional array, matrix or table, the first column
is assumed to have unique levels of x and the second to have groupings of this,
respectively.

Should the levels mentioned in ref (if it is a list) come before those not?
String used when constructing names for combined factor levels.

Logical. Should all levels in the 2nd column of ref be maintained as levels of
the result, or (if FALSE) only the actually occurring.

Relevel 161

nogroup Logical. Should levels present in the input but not in the 1st column of ref be
maintained as levels after the grouping? If FALSE, NAs will be returned for such
elements.

Arguments passed on to other methods.

Details

The facility where ref is a two-column matrix mimics the SAS-facility of formats where a dataset
can be used to construct a format — SAS format is the grouping tool for variable values.

If ref is a two-column object and ref[,2] is a factor Relevel will preserve the order of levels
from ref[,2].

Value

An unordered factor, where levels of x have been reordered and/or collapsed.

Author(s)

Bendix Carstensen http://bendixcarstensen.com, Lars Jorge Diaz

See Also

Relevel.Lexis

Examples

Grouping using a list (hard coding)
#
ff <- factor(sample(letters[1:5], 100, replace = TRUE))
table(ff, Relevel(ff, list(AB = 1:2, "Dee” = 4, c(3,5))))
table(ff, Relevel(ff,

list(5:4, Z = c("c", "a")),

coll = "-und-",

first = FALSE))

Grouping using a two-column matrix as input:

A factor with levels to be grouped together

ff <- factor(c("Bear"”,"Bear","Crocodile"”,"Snake","Crocodile"”, "Bear"))

ff

A grouping table

(gg <- data.frame(Animal = c("Bear"”,"Whale","Crocodile”,"Snake","Eagle"),
Class = c("Mammal”,"Mammal”,"Reptile”,"Reptile”,"Bird")))

str(gg)
Relevel (ff, gg, xlevels = FALSE)

Relevel (ff, gg)
Relevel (ff, ggl[c(1:5,5:1),1)

This crashes with an error
(GG <- rbind(gg, c("Bear"”,"Reptile")))
try(Relevel (ff, GG))

http://bendixcarstensen.com

162 rm.tr

ff <- factor(c(as.character(ff), "Jellyfish"”, "Spider"))

Relevel (ff, gg)

excludes non-occupied levels

Relevel (ff, gg, xlevels = FALSE)

If you do not want unknown animals classified, this returns NAs:
Relevel (ff, gg, nogroup = FALSE)

Both

Relevel (ff, gg, nogroup = FALSE, xlevels = FALSE)

rm.tr Remove transitions from a Lexis object.

Description

Sometimes certain transitions are not of interest. This function removes these and assigns the risk
time in the target state of the transitions to the originating state.

Usage

rm.tr(obj, from, to)

Arguments
obj A Lexis object.
from Character; name of the state from which the transition to be purged originates.
Must be a valid state name for obj.
to Character; name of the state to which the transition to be purged targets. Must
be a valid state name for obj.
Details

The function removes all transitions from from to to, and assigns all risk time in the to state after
the transition (lex.dur) to the from state. This is only done for risk time in to occurring directly
after from. Risk time in to occurring after a transition from states different from from is not
affected. Transitions from to to another state, other, say, will be changed to transitions from from
to other.

Value

A Lexis object with the indicated transition removed.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com.

See Also

Relevel

http://bendixcarstensen.com

ROC 163

Examples

data(DMlate)
dml <- Lexis(entry = list(Per=dodm, Age=dodm-dobth, DMdur=0),
exit = list(Per=dox),
exit.status = factor(!is.na(dodth),labels=c("DM","Dead")),
data = DMlate)

A small subset for illustration
dml <- subset(dml, lex.id %in% c(13,15,20,28,40))

Cut the follow-up at start of insulin therapy
dmi <- cutlLexis(dml, cut = dml$doins,
pre = "DM",
new.state = "Ins”)[,1:10]

How does it look?
dmi

Remove all transitions DM -> Ins
rm.tr(dmi, "DM", "Ins")

ROC Function to compute and draw ROC-curves.

Description

Computes sensitivity, specificity and positive and negative predictive values for a test based on
dichotomizing along the variable test, for prediction of stat. Plots curves of these and a ROC-

curve.
Usage

ROC(test = NULL,

stat = NULL,

form = NULL,

plot = C(”Sp”, IlRocll)’
PS = is.null(test),

PV = TRUE,
MX = TRUE,
MI = TRUE,

AUC = TRUE,

grid = seq(0,100,10),
col.grid = gray(0.9),
cuts = NULL,
lwd = 2,
data = parent.frame(),

164

Arguments

test
stat
form

plot

PS

PV
MX
MI

AUC
grid

col.grid
cuts

lwd

data

Details

ROC

Numerical variable used for prediction.
Logical variable of true status.

Formula used in a logistic regression. If this is given, test and stat are ignored.
If not given then both test and stat must be supplied.

Character variable. If "sp", the a plot of sensitivity, specificity and predictive
values against test is produced, if "ROC" a ROC-curve is plotted. Both may be
given.

logical, if TRUE the x-axis in the plot "ps"-plot is the the predicted probability
for stat==TRUE, otherwise it is the scale of test if this is given otherwise the
scale of the linear predictor from the logistic regression.

Should sensitivity, specificity and predictive values at the optimal cutpoint be
given on the ROC plot?

Should the “optimal cutpoint” (i.e. where sens+spec is maximal) be indicated
on the ROC curve?

Should model summary from the logistic regression model be printed in the
plot?
Should the area under the curve (AUC) be printed in the ROC plot?

Numeric or logical. If FALSE no background grid is drawn. Otherwise a grid is
drawn on both axes at grid percent.

Colour of the grid lines drawn.

Points on the test-scale to be annotated on the ROC-curve.

Thickness of the curves

Data frame in which to interpret the variables.

Additional arguments for the plotting of the ROC-curve. Passed on to plot

As an alternative to a test and a status variable, a model formula may given, in which case the
the linear predictor is the test variable and the response is taken as the true status variable. The test
used to derive sensitivity, specificity, PV+ and PV- as a function of x is test> x as a predictor of

stat=TRUE.

Value

A list with two components:

res

1r

dataframe with variables sens, spec, pvp, pvn and name of the test variable.
The latter is the unique values of test or linear predictor from the logistic re-
gression in ascending order with -Inf prepended. Since the sensitivity is defined
as P(test > z)|status = TRUE, the first row has sens equal to 1 and spec
equal to O, corresponding to drawing the ROC curve from the upper right to the
lower left corner.

glm object with the logistic regression result used for construction of the ROC
curve

0, 1 or 2 plots are produced according to the setting of plot.

S.typh

Author(s)

165

Bendix Carstensen, Steno Diabetes Center Copenhagen, http://bendixcarstensen.com

Examples

X <= rnorm(100)
z <- rnorm(100)
w <- rnorm(100)

tigol <- function(x) 1 - (1 + exp(x))*(-1)
y <- rbinom(100, 1, tigol(©.3 + 3*x + 5%z + 7xw))
ROC(form =y ~ x + z, plot="ROC")

S.typh

Salmonella Typhimurium outbreak 1996 in Denmark.

Description

Matched case-control study of food poisoning.

Format

A data frame with 136 observations on the following 15 variables:

id: Person identification
set: Matched set indicator
case: Case-control status (1:case, O:control
age: Age of individual
sex: Sex of individual (1:male, 2:female)
abroad: Within the last two weeks visited abroad (1:yes, 0:no)
beef: Within the last two weeks eaten beef
pork: Within the last two weeks eaten pork
veal: Within the last two weeks eaten veal
poultry: Within the last two weeks eaten poultry
liverp: Within the last two weeks eaten liverpaste
veg: Within the last two weeks eaten vegetables
fruit: Within the last two weeks eaten fruit
egg: Within the last two weeks eaten eggs
plant7: Within the last two weeks eaten meat from plant no. 7

Details

In the fall of 1996 an unusually large number of Salmonella Typhimurium cases were recorded in
Fyn county in Denmark. The Danish Zoonosis Centre set up a matched case-control study to find
the sources. Cases and two age-, sex- and residency-matched controls were telephone interviewed
about their food intake during the last two weeks.

The participants were asked at which retailer(s) they had purchased meat. Retailers were indepen-
dently of this linked to meat processing plants, and thus participants were linked to meat processing
plants. This way persons could be linked to (amongst other) plant no 7.

http://bendixcarstensen.com

166

Source

Tine Hald.

References

simLexis

Molbak K and Hald T: Salmonella Typhimurium outbreak in late summer 1996. A Case-control
study. (In Danish: Salmonella typhimurium udbrud paa Fyn sensommeren 1996. En case-kontrol
undersogelse.) Ugeskrift for Laeger., 159(36):5372-7, 1997.

Examples

data(S.typh)

simLexis

Simulate a Lexis object representing follow-up in a multistate model.

Description

Based on a (pre-)Lexis object representing persons at given states and times, and full specification
of transition intensities between states in the form of models for the transition rates, this function
simulates transition times and -types for persons and returns a Lexis object representing the sim-
ulated cohort. The simulation scheme accommodates multiple timescales, including time since
entry into an intermediate state, and accepts fitted Poisson models, Cox-models or just a function
as specification of rates.

Usage

simLexis(Tr,
N
lex.id,
t.range
n.int
time.pts
nState(obj,
pState(nSt,
S3 method
plot(x,

S3 method
lines(x,

init,
:'],

= 20,

=101,

= seq(@,t.range,length.out=n.int))
at, from, time.scale =1)

perm = 1:ncol(nSt))

for class 'pState'

col = rainbow(ncol(x)),

border = "transparent”,
xlab = "Time",
ylim = 0:1,
ylab = "Probability”, ...)

for class 'pState’

col = rainbow(ncol(x)),
border = "transparent”, ...)

simLexis

Arguments

Tr

init

lex.id

t.range

n.int

time.pts

obj

from
time.scale
at

nSt

perm

X
col
border
xlab
ylim
ylab

Details

167

A named list of named lists. The names of the list are names of the transient
states in the model. Each list element is again a named list. The names of the
elements of this inner list are the names of the states reachable from the state
with name equal to the list. Elements of the intter lists represent transitions. See
details.

A (pre-)Lexis object representing the initial state of the persons whose trajec-
tories through the multiple states we want to simulate. Must have attributes
"time.scales" and "time.since" — see details. Duplicate values of lex.id are
not sensible and not accepted.

Numeric. How many persons should be simulated. N persons with covariate
configuration of each row in init will be simulated. Either a scalar or a vector
of length nrow(init).

Vector of ids of the simulated persons. Useful when simulating in chunks.

Numerical scalar. The range of time over which to compute the cumulative
rates when simulating. Simulted times beyond this will result in an obervation
censored at t.range after entry.

Number of intervals to use when computing (cumulative) rates.

Numerical vector of times since start. Cumulative rates for transitions are com-
puted at these times after stater and entry state. Simulation is only done till time
max(time.pts) after start, where persons are censored. Must start with 0.

A Lexis object.
The point on the time scale time.scale from which we start counting.
The timescale to which from refer.

Time points (after from) where the number of persons in each state is to be
computed.

A table obtained by nState.

A permutation of columns used before cumulating row-wise and taking percent-
ages.

An object of class pState, e.g. created by pState.
Colors for filling the areas between curves.

Colors for outline of the areas between curves.
Label on x-axis

Limits on y-axis

Label on y-axis

Further arguments passed on to plot.

The simulation command simLexis is not defined as a method for Lexis objects, because the
input is not a Lexis object, the Lexis-like object is merely representing a prevalent population
and a specification of which variables that are timescales. The variables lex.dur and lex.Xst are
ignored (and overwritten) if present. The core input is the list Tr giving the transitions.

168 simLexis

The components of Tr represents the transition intensities between states. The transition from state
A to B, say, is assumed stored in TrAB. Thus names of the elements of Tr are names of transient
states, and the names of the elements of each these are the names of states reachable from the
corresponding transient state.

The transition intensities are assumed modelled by either a glm with Poisson family or a Cox-
model. In both cases the timescale(s) in the model must be using the names fo the timescales in a
Lexis object representng the follow-up in a cohort, and the risk time must be taken from the variable
lex.dur — see the example.

Alternatively, an element in Tr could be a function that from a data frame produces transition rates,
or specifically cumulative transition rates over intervals of length lex.dur.

The pre-Lexis object init must contain values of all variables used in any of the objects in Tr, as
well as all timescales - even those not used in the models. Moreover, the attributes time.scales
and time.since must be present. The attribute time. since is a character vector of the same length
as time.scales and an element has value "A" if the corresponding time scale is defined as "time
since entry into state A", otherwise the value is "". If not present it will be set to a vector of ""s,
which is only OK if no time scales are defined as time since entry to a state.

Note that the variables pre-Lexis object init must have the same mode and class as in the dataset

used for fitting the models — hence the indexing of rows by brackets in the assignment of val-

ues used in the example below - this way the variables have their attributes preserved; using
init[,"var"] <-orinit$var <-replaces the variable, whereas init[1:4,"var"] <-orinit$var[1:4]
<- replaces values only and prevents you from entering non-existing factor levels etc.

The function Lexis automatically generates an attribute time.since, and cutlLexis updates it
when new time scales are defined. Hence, the simplest way of defining a initial pre-Lexis object
representing a current state of a (set of) persons to be followed through a multistate model is to take
NULL rows of an existing Lexis object (normally the one used for estimation), and so ensuring that
all relevant attributes and state levels are properly defined. See the example code.

The prevalence function nState computes the distribution of individuals in different states at pre-
specified times. Only sensible for a simulated Lexis object. The function pState takes a matrix as
output by nState and computes the row-wise cumulative probabilities across states, and leaves an
object of class pState, suitable for plotting.

Value

simLexis returns a Lexis object representing the experience of a population starting as init fol-
lowed through the states according to the transitions in Tr.

The function nState returns a table of persons classified by states at each of the times in at. Note
that this function can easily produce meaningless results, for example if applied to a Lexis object
not created by simulation. If you apply it to a Lexis object generated by simLexis, you must make
sure that you start (from) the point where you started the simulation on the correct timescale, and
you will get funny results if you try to tabulate beyond the censoring time for the simulation. The
resulting object has class "table”.

non

The result from using pState on the result from nState has class c("pState”, "matrix").

Author(s)

Bendix Carstensen, http://bendixcarstensen.com.

http://bendixcarstensen.com

simLexis 169

See Also

Lexis, cutlLexis, splitLexis

Examples

data(DMlate)

dml <- Lexis(entry = list(Per=dodm, Age=dodm-dobth, DMdur=0),
exit = list(Per=dox),

exit.status = factor(!is.na(dodth),labels=c("DM","Dead")),

data = DMlate[runif(nrow(DMlate))<0.1,])

Split follow-up at insulin, introduce a new timescale,

and split non-precursor states

dmi <- cutlLexis(dml, cut = dml$doins,

pre = "DM",
new.state = "Ins”,
new.scale = "t.Ins",

split.states = TRUE)

Split the follow in 1-year intervals for modelling
Si <- splitLexis(dmi, ©:30/2, "DMdur"”)
Define knots
nk <- 4
(ai.kn <- with(subset(Si,lex.Xst=="Ins"),

quantile(Age+lex.dur, probs=(1:nk-0.5)/nk)))
(ad.kn <- with(subset(Si,lex.Xst=="Dead"),

quantile(Age+lex.dur, probs=(1:nk-0.5)/nk)))
(di.kn <- with(subset(Si,lex.Xst=="Ins"),

quantile(DMdur+lex.dur, probs=(1:nk-0.5)/nk)))
(dd.kn <- with(subset(Si,lex.Xst=="Dead"),

quantile(DMdur+lex.dur, probs=(1:nk-0.5)/nk)))
(td.kn <- with(subset(Si,lex.Xst=="Dead(Ins)"),

quantile(t.Ins+lex.dur, probs=(1:nk-0.5)/nk)))

Fit Poisson models to transition rates
library(splines)
DM.Ins <- glm((lex.Xst=="Ins") ~ Ns(Age , knots=ai.kn) +
Ns(DMdur, knots=di.kn) +
I(Per-2000) + sex,
family=poisson, offset=log(lex.dur),
data = subset(Si,lex.Cst=="DM"))
DM.Dead <- glm((lex.Xst=="Dead") ~ Ns(Age , knots=ad.kn) +
Ns(DMdur, knots=dd.kn) +
I(Per-2000) + sex,
family=poisson, offset=log(lex.dur),
data = subset(Si,lex.Cst=="DM"))
Ins.Dead <- glm((lex.Xst=="Dead(Ins)") ~ Ns(Age , knots=ad.kn) +
Ns(DMdur, knots=dd.kn) +
Ns(t.Ins, knots=td.kn) +
I(Per-2000) + sex,
family=poisson, offset=log(lex.dur),
data = subset(Si,lex.Cst=="Ins"))

Stuff the models into an object representing the transitions

170 simLexis

Tr <- list("DM" = list("Ins” DM. Ins,
"Dead" DM.Dead),
"Ins" = list("Dead(Ins)" = Ins.Dead))
lapply(Tr, names)

Define an initial object - note the subsetting that ensures that
all attributes are carried over

ini <- Si[1,1:9][-1,1]

ini[1:2,"lex.Cst"] <- "DM"

ini[1:2,"Per"] <- 1995

ini[1:2,"Age"] <- 60

ini[1:2,"DMdur”] <- 5

ini[1:2,"sex"] <= c("M","F")

str(ini)

Simulate 200 of each sex using the estimated models in Tr
simL <- simLexis(Tr, ini, time.pts=seq(@,11,0.5), N=200)
summary(simL)

Find the number of persons in each state at a set of times.
Note that the times are shirter than the time-span simulated.
nSt <- nState(subset(simL,sex=="M"),

at=seq(0,10,0.1), from=1995, time.scale="Per"”)
nSt

Show the cumulative prevalences in a different order than that of the
state-level ordering and plot them using all defaults

pp <- pState(nSt, perm=c(1,2,4,3))

head(pp)

plot(pp)

A more useful set-up of the graph

clr <- c("orange2","forestgreen”)

par(las=1)

plot(pp, col=clr[c(2,1,1,2)1)

lines(as.numeric(rownames(pp)), ppl,2]1, lwd=2)

mtext("60 year old male, diagnosed 1995", side=3, line=2.5, adj=0)

mtext("Survival curve”, side=3, line=1.5, adj=0)

mtext("DM, no insulin DM, Insulin”, side=3, line=0.5, adj=0, col=clr[1])
mtext("DM, no insulin”, side=3, line=0.5, adj=0, col=clr[2])

axis(side=4)

Using a Cox-model for the mortality rates assuming the two mortality
rates to be proportional:
When we fit a Cox-model, lex.dur must be used in the Surv() function,
and the I() constrction must be used when specifying intermediate
states as covariates, since factors with levels not present in the
data will create NAs in the parameter vector returned by coxph, which
in return will crash the simulation machinery.
library(survival)
Cox.Dead <- coxph(Surv(DMdur, DMdur+lex.dur,

lex.Xst %in% c("Dead(Ins)"”,"Dead")) ~
Ns(Age-DMdur, knots=ad.kn) +

#
#
#
#
#
#

splitLexis 171

I(lex.Cst=="Ins") +
I(Per-2000) + sex,
data = Si)
Cr <- list("DM" = list("Ins" DM. Ins,
"Dead" Cox.Dead),
"Ins" = list("Dead(Ins)" = Cox.Dead))
simL <- simLexis(Cr, ini, time.pts=seq(@,11,0.2), N=200)
summary (simL)
nSt <- nState(subset(simL,sex=="M"),
at=seq(0,10,0.2), from=1995, time.scale="Per”)
pp <- pState(nSt, perm=c(1,2,4,3))
plot(pp)

splitlexis Split follow-up time in a Lexis object

Description
The splitlLexis function divides each row of a Lexis object into disjoint follow-up intervals ac-
cording to the supplied break points.

Usage

splitLexis(lex, breaks, time.scale, tol=.Machine$double.eps”0.5)

Arguments

lex an object of class Lexis

breaks a vector of break points

time.scale the name or number of the time scale to be split

tol numeric value >= 0. Intervals shorter than this value are dropped
Value

An object of class Lexis with multiple rows for each row of the argument lex. Each row of the
new Lexis object contains the part of the follow-up interval that falls inside one of the time bands
defined by the break points.

The variables representing the various time scales, are appropriately updated in the new Lexis
object. The entry and exit status variables are also updated according to the rule that the entry status
is retained until the end of follow-up. All other variables are considered to represent variables that
are constant in time, and so are replicated across all rows having the same id value.

Note

The splitLexis() function divides follow-up time into intervals using breakpoints that are com-
mon to all rows of the Lexis object. To split a Lexis object by break points that are unique to each
row, use the cut.Lexis function.

172 splitLexis

Author(s)

Martyn Plummer

See Also

timeBand, cutLexis, mcutlLexis, summary.Lexis

Examples

A small bogus cohort
xcoh <- structure(list(id = c("A", "B", "C"),
birth = c("14/07/1952", "@1/04/1954", "10/06/1987"),
entry = c("04/08/1965", "@8/09/1972", "23/12/1991"),
exit = c("27/06/1997", "23/05/1995", "24/07/1998"),
fail = c(1, o, 1)),
.Names = c("id", "birth", "entry”, "exit", "fail"),
row.names = c("1", "2", "3"),
class = "data.frame"”)

Convert the character dates into numerical variables (fractional years)
xcoh$bt <- cal.yr(xcoh$birth, format="%d/%m/%Y")
xcoh$en <- cal.yr(xcoh$entry, format="%d/%m/%Y")
xcoh$ex <- cal.yr(xcoh$exit , format="%d/%m/%Y")

See how it looks
xcoh

Define as Lexis object with timescales calendar time and age
Lcoh <- Lexis(entry = list(per=en),
exit = list(per=ex, age=ex-bt),
exit.status = fail,
data = xcoh)

Default plot of follow-up
plot(Lcoh)

With a grid and deaths as endpoints
plot(Lcoh, grid=0:10x10, col="black"”)
points(Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1])

With a lot of bells and whistles:

plot(Lcoh, grid=0:20x5, col="black”, xaxs="i", yaxs="i",
x1im=c(1960,2010), ylim=c(0,50), lwd=3, las=1)

points(Lcoh, pch=c(NA,16)[Lcoh$lex.Xst+1], col="red", cex=1.5)

Split time along two time-axes

(x2 <- splitlLexis(Lcoh, breaks = seq(1900,2000,5), time.scale="per"))
(x2 <- splitLexis(x2, breaks = seq(0,80,5), time.scale="age"))

str(x2)

Tabulate the cases and the person-years
summary (x2)

stack.Lexis 173

tapply(status(x2,”exit”)==1, list(timeBand(x2,"age","left"),
timeBand(x2, "per”,"left")), sum)
tapply(dur(x2), 1list(timeBand(x2,"age","left"),
timeBand(x2, "per”,"left")), sum)

stack.Lexis Functions to facilitate analysis of multistate models.

Description

stack.Lexis produces a stacked object suited for analysis of several transition intensities simulta-

neously.
Usage
S3 method for class 'Lexis'
stack(x, ...)
tmat(x, ...)
S3 method for class 'Lexis'
tmat(x, Y=FALSE, mode = "numeric”, ...)
Arguments
X A Lexis object.
Y Logical. Should the risk time be put in the diagonal? This is a facility which is
used by boxes.Lexis.
mode Should the matrix be returned as a numeric matrix with NAs at unused places or
(mode="logical") as a logical matrix with FALSE on the diagonal.
Not used.
Value

tmat.Lexis returns a square transition matrix, classified by the levels of 1ex.Cst and lex.Xst, for
every transition occurring the entry is the number of transitions occurring and NA in all oter entries.
If Y=TRUE, the diagonal will contain the risk time in each of the states.

stack.Lexis returns a dataframe to be used for analysis of multistate data when all transitions
are modelled together, for example if some parameters are required to be the same for different
transitions. The dataframe has class stacked.Lexis, and inherits the attributes time.scales and
breaks from the Lexis object, and so function timeBand applies to a stacked.Lexis object too.

The dataframe has same variables as the original Lexis object, but with each record duplicated as
many times as there are possible exits from the current state, lex.Cst. Two variables are added:
lex.Fail, an indicator of wheter an event for the transition named in the factor 1ex. Tr has occurred
or not. lex.Tr is a factor with levels made up of combinations of the levels of 1ex.Cst and lex.Xst
that do occur together in x, joined by a "->".

174 stat.table

Author(s)

Bendix Carstensen, <b@bxc.dk>, http://bendixcarstensen.com

See Also

splitlexis cutlexis Lexis

Examples

data(DMlate)

str(DMlate)

dml <- Lexis(entry=list(Per=dodm, Age=dodm-dobth, DMdur=0),
exit=list(Per=dox),

exit.status=factor(!is.na(dodth),labels=c("DM","Dead")),

data=DMlate)

dmi <- cutLexis(dml, cut=dml$doins, new.state="Ins", pre="DM")

summary (dmi)

ls.dmi <- stack(dmi)

str(ls.dmi)

Check that all the transitions and person-years got across.

with(ls.dmi, rbind(table(lex.Fail,lex.Tr),

tapply(lex.dur,lex.Tr,sum)))

stat.table Tables of summary statistics

Description

stat. table creates tabular summaries of the data, using a limited set of functions. A list of index
variables is used to cross-classify summary statistics. It does NOT work inside with()!

Usage

stat.table(index, contents = count(), data, margins = FALSE)
S3 method for class 'stat.table'
print(x, width=7, digits,...)

Arguments

index A factor, or list of factors, used for cross-classification. If the list is named, then
the names will be used when printing the table. This feature can be used to give
informative labels to the variables.

contents A function call, or list of function calls. Only a limited set of functions may
be called (See Details below). If the list is named, then the names will be used
when printing the table.

data an optional data frame containing the variables to be tabulated. If this is omitted,

the variables will be searched for in the calling environment.

http://bendixcarstensen.com

stat.table 175

margins a logical scalar or vector indicating which marginal tables are to be calculated.
If a vector, it should be the same length as the index argument: values corre-
sponding to TRUE will be retained in marginal tables.

X an object of class stat. table.
width a scalar giving the minimum column width when printing.
digits a scalar, or named vector, giving the number of digits to print after the decimal

point. If a named vector is used, the names should correspond to one of the per-
mitted functions (See Details below) and all results obtained with that function
will be printed with the same precision.

further arguments passed to other print methods.

Details

This function is similar to tapply, with some enhancements: multiple summaries of multiple vari-
ables may be mixed in the same table; marginal tables may be calculated; columns and rows may
be given informative labels; pretty printing may be controlled by the associated print method.

This function is not a replacement for tapply as it also has some limitations. The only functions
that may be used in the contents argument are: count, mean, weighted.mean, sum, quantile,
median, IQR, max, min, ratio, percent, and sd.

The count () function, which is the default, simply creates a contingency table of counts. The other
functions are applied to each cell created by combinations of the index variables.

Value
An object of class stat.table, which is a multi-dimensional array. A print method is available to
create formatted one-way and two-way tables.

Note

The permitted functions in the contents list are defined inside stat.table. They have the same
interface as the functions callable from the command line, except for two differences. If there is
an argument na.rm then its default value is always TRUE. A second difference is that the quantile
function can only produce a single quantile in each call.

Author(s)

Martyn Plummer

See Also

table, tapply, mean, weighted.mean, sum, quantile, median, IQR, max, min, ratio, percent,
count, sd.

Examples

data(warpbreaks)
A one-way table
stat.table(tension,list(count(),mean(breaks)),data=warpbreaks)

176 stattable.funs

The same table with informative labels
stat.table(index=1list("Tension level”=tension),list(N=count(),
"mean number of breaks”=mean(breaks)),data=warpbreaks)

A two-way table

stat.table(index=1list(tension,wool),mean(breaks),data=warpbreaks)

The same table with margins over tension, but not wool

stat.table(index=1list(tension,wool),mean(breaks),data=warpbreaks,
margins=c(TRUE, FALSE))

A table of column percentages

stat.table(list(tension,wool), percent(tension), data=warpbreaks)

Cell percentages, with margins

stat.table(list(tension,wo0l),percent(tension,wool), margin=TRUE,
data=warpbreaks)

A table with multiple statistics

Note how each statistic has its own default precision

a <- stat.table(index=list(wool,tension),
contents=list(count(),mean(breaks),percent (wool)),
data=warpbreaks)

print(a)

Print the percentages rounded to the nearest integer

print(a, digits=c(percent=0))

stattable.funs Special functions for use in stat.table

Description

These functions may be used as contents arguments to the function stat. table. They are defined
internally in stat.table and have no independent existence.

Usage
count(id)
ratio(d,y,scale=1, na.rm=TRUE)
percent(...)
Arguments
id numeric vector in which identical values identify the same individual.
d,y numeric vectors of equal length (d for Deaths, y for person-Years)
scale a scalar giving a value by which the ratio should be multiplied
na.rm a logical value indicating whether NA values should be stripped before computa-

tion proceeds.

a list of variables taken from the index argument to stat. table

steno2 177

Value

When used as a contents argument to stat. table, these functions create the following tables:

count If given without argument (count()) it returns a contingency table of counts. If
given an id argument it returns a table of the number of different values of id in
each cell, i.e. how many persons contribute in each cell.

ratio returns a table of values scale * sum(d)/sum(y)

percent returns a table of percentages of the classifying variables. Variables that are in
the index argument to stat.table but not in the call to percent are used to
define strata, within which the percentages add up to 100.

Author(s)

Martyn Plummer

See Also

stat.table

steno2 Clinical trial: Steno2 baseline and follow-up.

Description

Steno-2 was a clinical trial conducted at Steno Diabetes Center 1993-2001. The intervention was
intensified treatment versus conventional treatment of diabetes patients with micro-albuminuria.
The datsets here concern the extended follow-up of the trial population till 2015. Three files are
provided: steno2 with one record per person, st2clin with one record per clinical visit and st2alb
with one record per transition between states of albuminuria.

These dataset are entirely simulated, but designed to give approximately the same results as the
original.

Usage

data("steno2")
data("st2clin")
data("st2alb")

Format
steno?2 is a data frame with 160 observations on the following 14 variables:
id person id, numeric
allo Original trial allocation, a factor with levels Int Conv

sex Sex, a factor with levels F M

baseCVD 0/1 indicator of preexisting CVD at baseline

178 steno2

deathCVD 0/1 indicator whether cause of death was CVD
doBth Date of birth, a Date

doDM Date of diabetes diagnosis, a Date

doBase Date of entry to study, a Date

doCVD1 Date of 1st CVD event, a Date

doCVD2 Date of 2nd CVD event, a Date

doCVD3 Date of 3rd CVD event, a Date

doESRD Date of end stage renal disease, a Date

doEnd Date of exit from follow-up, a Date

doDth Date of death, a Date

st2clin is data frame with 750 observations on clinical measurements at different clinical visits:

id person id, numeric

doV Date of clinical visit, a Date

alc Glycosylated hemoglobin, mmol/mol
chol Total cholesterol, mg/mol

crea Creatinine, mg/mol
st2alb is data frame with 307 observations of changes in complication (albuminuria) state

id person id, numeric
doTr Date of transition, a Date

state State of albuminuria, factor with levels Norm, Mic, Mac. All persons begin in the state Micro-
albuminuria.

Details

The data are not the original; all values of measurements and dates have been randomly perturbed,
to prevent identifiability of individuals. Analysis of these data will give only (very) approximately
the same results as in the published article, and only some of the aspects of data are included.

References

P. Gaede, J. Oellgaard, B. Carstensen, P. Rossing, H. Lund-Andersen, H. H. Parving & O. Pedersen:
Years of life gained by multifactorial intervention in patients with type 2 diabetes mellitus and

microalbuminuria: 21 years follow-up on the Steno-2 randomised trial. Diabetologia (2016), 59, pp
2298-2307

Examples

data(steno2)
data(st2alb)
L2 <- Lexis(entry = list(per = doBase,
age = doBase - doBth),
exit = list(per = doEnd),

subset.Lexis 179

exit.status = factor(deathCVD + !is.na(doDth),
labels=c("Mic","D(oth)","D(CVD)")),
id = id,
data = cal.yr(steno2))

summary (L2)
#
Cut at intermediate transitions
cut2 <- data.frame(lex.id = st2albs$id,
cut = cal.yr(st2alb$do),
new.state = st2alb$state)
L3 <- rcutLexis(L2, cut2)

summary(L3)

#

no direct transitions Mic <-> Mac allowed, so put a cut in between:
dd <- subset(L3, (lex.Cst == "Mac” & lex.Xst =="Norm") |

(lex.Cst =="Norm” & lex.Xst == "Mac"))
artificial visits to the middle state Mic:
cut3 <- data.frame(lex.id = dd$lex.id,

cut = dd$per + dd$lex.dur/2,
new.state = "Mic")
L4 <- rcutlLexis(L3, cut3)
summary (L4)
#

Show all transitions
boxes(L4, boxpos = list(x = ¢(15,15,15,85,85),
y = ¢(50,15,85,25,75)),
show.BE = TRUE, scale.R = 1000,
cex=0.8, pos.arr=0.7, font=1, font.arr=1)

subset.Lexis Subsetting Lexis (and stacked.Lexis) objects

Description

Return subsets of Lexis objects which meet conditions

Usage
S3 method for class 'Lexis'
subset(x, ...)
S3 method for class 'Lexis'
x[...]
S3 method for class 'stacked.Lexis'
subset(x, ...)
Arguments
X an object of class Lexis

additional arguments to be passed to subset.data.frame. This will normally
be some logical expression selecting a subset of the rows. For details see subset.data. frame.

180 summary.Lexis

Details

The subset method for Lexis objects works exactly as the method for data frames. So does the "["
method. The special methods are needed in order to propagate the Lexis-specific attributes.

The method for stacked.Lexis objects also shrinks the set of levels for 1lex.Cst and lex.Xst to
those actually occurring in the resulting data frame.

Value

A Lexis object with selected rows and columns.

Author(s)

Martyn Plummer

See Also

Lexis, merge.Lexis, bootlLexis

summary.Lexis Summarize transitions and risk time from a Lexis object

Description
A two-way table of records and transitions classified by states (1ex.Cst and lex.Xst), as well the
risk time in each state.

Usage

S3 method for class 'Lexis'
summary(object, simplify = TRUE, scale = 1, by = NULL,

Rates = FALSE, timeScales = FALSE, ...)
S3 method for class 'summary.Lexis'
print(x, ..., digits = 2)
Arguments
object A Lexis object.
simplify Should rows with 0 follow-up time be dropped?
scale Scaling factor for the rates. The calculated rates are multiplied by this number.
by Character vector of name(s) of variable(s) in object. Used to give a separate

summaries for subsets of object. If longer than than 1, the interaction between
that variables is used to stratify the summary. It is also possible to supply a
vector of length nrow(object), and the distinct values of this will be used to
stratify the summary.

Rates Should a component with transition rates be returned (and printed) too?

Termplot 181

timeScales Should the names of the timescales and the indication of since which entry also
be given?
X A Lexis or summary.Lexis object.
digits Number of digits after the decimal separator used when printing the summary.
Ignored.
Value

An object of class summary.Lexis, a list with two components, Transitions and Rates, each one
a matrix with rows classified by states where persons spent time, and columns classified by states
to which persons transit. The Transitions contains number of transitions and has 4 extra columns
with number of records, total number of events, total risk time and number of person contributing
attached. The Rates contains the transitions rates.

If the argument Rates is FALSE (the default), then only the first component of the list is returned.

Author(s)

Bendix Carstensen, http://bendixcarstensen.com

Examples

data(nickel)
Lung cancer deaths and other deaths are coded 1 and 2
nic <- Lexis(data = nickel,
entry = list(age = agein),
exit = list(age = ageout,cal = ageout+dob,tfh = ageout-agelst),
exit.status = factor((icd > @) + (icd %in% c(162,163)),
labels = c("Alive"”,"Other”,"”Lung")))

str(nic)

head(nic)

summary(nic)

More detailed summary, by exposure level

summary(nic, by = nic$exposure>5, Rates = TRUE, scale = 100)

Termplot A wrapper for termplot that optionally (but by default) exponentiates
terms, and plot them on a common log-scale. Also scales x-axes to the
same physical scale.

Description

The function uses termplot to extract terms from a model with, say, spline, terms, including the
standard errors, computes confidence intervals and transform these to the rate / rate-ratio scale.
Thus the default use is for models on the log-scale such as Poisson-regression models. The function
produces a plot with panels side-by-side, one panel per term, and returns the

http://bendixcarstensen.com

182

Usage

Termplot

Termplot(obj,

Arguments
obj
plot
xlab
ylab
xeq

yshr

alpha
terms

max.pt

Value

plot
xlab
ylab
xeq
yshr
alpha
terms
max.pt

= TRUE,
= NULL,
= NULL,
= TRUE,

= 0.05,
= NULL,
= NULL)

An object with a terms-method — for details the the documentation for termplot.
Should a plot be produced?

Labels for the x-axes. Defaults to the names of the terms.

Labels for the x-axes. Defaults to blank.

Should the units all all plots have the same physical scale for the x-axes).

Shrinking of y-axis. By default, the y-axes have an extent that accommodates
the entire range of confidence intervals. This is a shrinking parameter for the
y-axes, setting it to less than 1 will lose a bit of the confidence limits on some of
the panels.

1 minus the confidence level for computing confidence intervals
Which terms should be reported. Passed on to termplot and eventually predict.

The maximal number of points in which to report the terms. If NULL all unique
points from the analysis dataset are reported for each term (this is a feature of
termplot).

A list with one component per term in the model object obj, each component is a 4-column matrix
with x as the first column, and 3 columns with estimae and lower and upper confidence limit.

Author(s)

Bendix Cartensen

See Also

Ns, termplot

Examples

Get the diabetes data and set up as Lexis object
data(DMlate)
DMlate <- DMlate[sample(1:nrow(DMlate),500),]

dml <- Lexis(entry = list(Per=dodm, Age=dodm-dobth, DMdur=0),

testisDK 183

exit = list(Per=dox),
exit.status = factor(!is.na(dodth),labels=c("DM","Dead")),
data = DMlate)

Split in 1-year age intervals
dms <- splitlLexis(dml, time.scale="Age", breaks=0:100)

Model with 6 knots for both age and period
n.kn <- 6
Model age-specific rates with period referenced to 2004
(a.kn <- with(subset(dms,lex.Xst=="Dead"),
quantile(Agetlex.dur, probs=(1:n.kn-0.5)/n.kn)))
(p.kn <= with(subset(dms,lex.Xst=="Dead"),
quantile(Per+lex.dur, probs=(1:n.kn-0.5)/n.kn)))
m2 <- glm(lex.Xst=="Dead" ~ -1 +
Ns(Age, kn=a.kn, intercept=TRUE) +
Ns(Per, kn=p.kn, ref=2004),
offset = log(lex.dur), family=poisson, data=dms)

Finally we can plot the two effects:
Termplot(m2, yshr=0.9)

testisDK Testis cancer incidence in Denmark, 1943—1996

Description

Number of testiscancer cases and male person-years in the Danish population 1943-1996

Usage

data(testisDK)

Format
A data frame with 4860 observations on the following 4 variables.

A Age class, 0,1,2,...,89
P Year, 1943,...,1996
D Number of testis cancer cases

Y Person years

Source

The Danish Cancer Registry

Examples

data(testisDK)
head(testisDK)

184 thoro

thoro Thorotrast Study

Description

The thoro data frame has 2470 rows and 14 columns. Each row represents one patient that have
had cerebral angiography (X-ray of the brain) with an injected contrast medium, either Thorotrast
or another one (the controls).

Format
This data frame contains the following columns:

id Identification of person.

sex Sex, 1: male/2: female.

birthdat Date of birth, Date variable.

contrast Group, 1: Thorotrast / 2: Control.

injecdat Date of contrast injection, Date variable.

volume Injected volume of Thorotrast in ml. Control patients have a 0 in this variable.
exitdat Date of exit from the study, Date variable.

exitstat Status at exit, 1: dead / 2: alive, censored at closing of study, 20 February 1992 / 3:
censored alive at some earlier date.

cause Cause of death. See causes in the helpfile for gmortDK.
liverdat Date of liver cancer diagnosis, Date variable.

liver Indicator of liver cancer diagnosis. Not all livercancers are histologically verified, hence
liver >=hepcc + chola + hmang

hepcc Hepatocellular carcinoma at liverdat.
chola Cholangiocellular carcinoma at 1iverdat.

hmang Haemangisarcoma carcinoma at liverdat.

Source

M Andersson, M Vyberg, J Visfeldt, B Carstensen & HH Storm: Primary liver tumours among
Danish patients exposed to Thorotrast. Radiation Research, 137, pp. 262-273, 1994.

M Andersson, B Carstensen HH Storm: Mortality and cancer incidence after cerebral angiography.
Radiation Research, 142, pp. 305-320, 1995.
See Also

mortDK, gmortDK

Examples

data(thoro)
str(thoro)

timeBand 185

timeBand Extract time band data from a split Lexis object

Description

The break points of a Lexis object (created by a call to splitLexis) divide the follow-up intervals
into time bands along a given time scale. The breaks function returns the break points, for a given
time scale, and the timeBand classifies each row (=follow-up interval) into one of the time bands.

Usage

timeBand(lex, time.scale, type="integer")
breaks(lex, time.scale)

Arguments
lex an object of class Lexis
time.scale a character or integer vector of length 1 identifying the time scale of interest
type a string that determines how the time bands are labelled. See Details below
Details

Time bands may be labelled in various ways according to the type argument. The permitted values
of the type argument, and the corresponding return values are:

"integer'' a numeric vector with integer codes starting from O.
"factor' a factor (unordered) with labels "(left,right]"

"left" the left-hand limit of the time band

"'middle" the midpoint of the time band

"right" the right-hand limit of the time band

Value

The breaks function returns a vector of break points for the Lexis object, or NULL if no break
points have been defined by a call to splitLexis. The timeBand function returns a numeric vector
or factor, depending on the value of the type argument.

Note

A newly created Lexis object has no break points defined. In this case, breaks will return NULL,
and timeBand will a vector of zeros.

Author(s)

Martyn Plummer

186 timeScales

See Also

Lexis

Examples

data(diet)
diet <- cal.yr(diet)
diet.lex <- Lexis(entry=list(period=doe),
exit=list(period=dox, age=dox-dob),
exit.status=chd,
data=diet)
diet.split <- splitlLexis(diet.lex, breaks=seq(40,70,5), "age")
age.left <- timeBand(diet.split, "age", "left")
table(age.left)

age.fact <- timeBand(diet.split, "age"”, "factor")
table(age.fact)
age.mid <- timeBand(diet.split, "age"”, "mid")
table(age.mid)

timeScales The time scales of a Lexis object

Description

Functions to get the names and type of the time scales of a Lexis object.

Usage

timeScales(x)
timeSince(x)
tsNA20(x, all.scales=FALSE)

Arguments
X an object of class Lexis.
all.scales Should NAs in all timescales be replaced by 0?7 If FALSE (the default) only
timescales defined as time since entry to a state get NAs replaced by Os
Value

timeScales returns a character vector containing the names of the variables in x that represent the
time scales. Extracted from the time.scales attribute of the object.

timeSince returns a named character vector, the names being the names of the timescales and the
content being the names of the states to which the corresponding timescale is defined as time since
entry. For those time scales that are not defined as such an empty string is used. Hence, if none
of the timescales are defined as time since entry to a state timeSince will return a vector of empty
strings.

transform.Lexis 187
Author(s)

Martyn Plummer, Bendix Carstensen

See Also

Lexis, splitlLexis

transform.Lexis Transform a Lexis (or stacked.Lexis) object
Description
Modify a Lexis object.
Usage
S3 method for class 'Lexis'
factorize(x, ..., verbose = FALSE)
S3 method for class 'Lexis'
Relevel(x, ref, ...)
S3 method for class 'Lexis'
levels(x)
S3 method for class 'Lexis'
transform(" _data™, ...)
S3 method for class 'stacked.Lexis'
transform(" _data™, ...)
order.Lexis(x)
orderLexis(x)
sortlLexis(x)
Arguments
_data an object of class Lexis.
X an object of class Lexis.
ref New names (or order) of the factor levels (states) for lex.Cst and lex.Xst.

Can be a list, in which case some levels are collapsed, see the documentation for
Relevel. No sanity check for the latter type of operation is undertaken.

Additional arguments to be passed to transform.data. frame, Relevel.factor.

verbose Logical. Should a list of new levels be printed?

188 transform.Lexis

Details
The transform method for Lexis objects works exactly as the method for data frames, but keeps the
Lexis attributes.
factorize transforms the variables lex.Cst and lex. Xst to factors with identical sets of levels.

Relevel does the same as Relevel.factor, but for both the factors lex.Cst and lex.Xst in x.
lex.Cst and lex.Xst must be factors with the same levels. They can be made so by factorize.

If ref is an integer or character vector, the levels of 1lex.Cst and lex.Xst are permuted to match
the order of ref.

If ref is NULL, as when for example the argument is not passed to the function, the returned object
have levels of lex.Cst, lex.Xst (and for stacked.Lexis objects lex.Tr) shaved down to the
actually occurring values; that is, empty levels are discarded.

order.Lexis returns the order of the rows in a Lexis object to sort it by ()1ex. id,ts), where ts is
a timescale in the Lexis object with no NAs. orderLexis is just a synonym.

sortlLexis returns the Lexis object sorted by (1lex. id, ts) where ts is one of the timeScales with
no NAs.

Value

A transformed Lexis object.

The function levels returns the names of the states (levels of the factors lex.Cst and lex.Xst.

Author(s)

Martyn Plummer, Bendix Carstensen

See Also

Lexis, merge.Lexis, subset.Lexis, subset.stacked.Lexis, Relevel, transient, absorbing

Examples

data(nickel)
nic <- Lexis(data = nickel,
id = id,
entry = list(age = agein),
exit = list(age = ageout,
cal = ageout+dob,
tfh = ageout-agelst),
Lung cancer deaths end as 2 and other deaths as 1
exit.status = factor((icd > @) + (icd %in% c(162,163)),
labels = c("Alive"”,"Dead"”,"Lung")))

str(nic)

levels(nic)

nit <- transform(nic, cumex = exposure * (agein - agelst))
str(nit)

It is still a Lexis object!
summary(nic)

twoby2 189

change order of levels
nix <- Relevel(nic, c("Alive"”, "Lung”, "Dead"))
summary (nix)

change names of levels

niw <- Relevel(nix, list("Alive” = 1, "Pulm” = "Lung”, "Mort"” = "Dead"))
summary (niw)

boxes(niw, boxpos = TRUE)

combine levels

niz <- Relevel(niw, list("Alive”, c("Pulm”, "Mort")), coll=" \n& ")
summary(niz)

par(new = TRUE)

boxes(niz, boxpos = TRUE)

#stack Lexis object
siw <- stack(niw)
str(siw)

twoby2 Analysis of a two by two table

Description

Computes the usual measures of association in a 2 by 2 table with confidence intervals. Also
produces asymtotic and exact tests. Assumes that comparison of probability of the first column
level between levels of the row variable is of interest. Output requires that the input matrix has
meaningful row and column labels.

Usage

twoby?2(exposure, outcome,
alpha = 0.05, print = TRUE, dec = 4,
conf.level = 1-alpha, F.lim = 10000)

Arguments
exposure If a table the analysis is based on the first two rows and first two columns of this.
If a variable, this variable is tabulated against
outcome as the second variable
alpha Significance level
print Should the results be printed?
dec Number of decimals in the printout.
conf.level 1-alpha

F.lim If the table total exceeds F.1im, Fisher’s exact test is not computed

190 unlLexis

Value
A list with elements:

table The analysed 2 x 2 table augmented with probabilities and confidence intervals.
The confidence intervals for the probabilities are computed using the normal
approximation to the log-odds. Confidence intervals for the difference of pro-
portions are computed using method 10 from Newcombe, Stat.Med. 1998, 17,

pp-873 ff.
measures A table of Odds-ratios and relative risk with confidence intervals.
p.value Exact p-value for the null hypothesis of OR=1

Author(s)
Mark Myatt. Modified by Bendix Carstensen.

Examples

Treat <- sample(c("A","B"), 50, rep=TRUE)

Resp <- c("Yes"”,"No")[1+rbinom(50,1,0.3+0.2*%(Treat=="A"))]

twoby2(Treat, Resp)

twoby2(table(Treat, Resp)[,2:1]) # Comparison the other way round

unLexis Remove Lexis attributes from a Lexis object.

Description

Removes the Lexis attributes, including the class Lexis from a Lexis object.

Usage

unLexis(Lx)

Arguments

Lx A Lexis object

Value

The input object with "Lexis" removed from the class attribute.

Author(s)

Bendix Carstensen

See Also

Lexis

Y.dk 191

Examples

A small bogus cohort
xcoh <- structure(list(id = c("A", "B", "C"),
birth = c("14/07/1952", "@1/04/1954", "10/06/1987"),
entry = c("04/08/1965", "08/09/1972", "23/12/1991"),
exit = c("27/06/1997", "23/05/1995", "24/07/1998"),
fail = c(1, 0, 1)),
.Names = c("id", "birth”, "entry”, "exit", "fail"),
row.names = c("1", "2", "3"),
class = "data.frame")

Convert the character dates into numerical variables (fractional years)
xcoh <- cal.yr(xcoh, format="%d/%m/%Y", wh=2:4)
xcoh <- cal.yr(xcoh, format="%d/%m/%Y", wh=2:4)

Define a Lexis object with timescales calendar time and age
Lcoh <- Lexis(entry = list(per = entry),
exit = list(per = exit,
age = exit - birth),
exit.status = fail,
data = xcoh)

summary (Lcoh)
try(summary(unLexis(Lcoh)))

Y.dk Population risk time in Denmark

Description

Risk time (person-years) in the Danish population, classified by sex, age, period and date of birth
in 1-year classes. This corresponds to triangles in a Lexis diagram.

Usage
data(Y.dk)

Format

A data frame with 13860 observations on the following 6 variables.

sex Sex. l:males, 2:females
A One-year age class

P Period

C Birth cohort

Y Person-years

upper Indicator of upper triangle in the Lexis diagram

192 Y.dk

Details

The risk time is computed from the population size figures in N.dk, using the formulae devised
in: B. Carstensen: Age-period-cohort models for the Lexis diagram. Statistics in Medicine, 10;
26(15):3018-45, 2007.

Source

http://www.statistikbanken.dk/statbank5a/SelectTable/omrade@.asp?SubjectCode=02&
PLanguage=1&ShowNews=0FF

Examples

data(Y.dk)
str(Y.dk)
Compute mean age, period for the triangles
attach(Y.dk)
age <- A + (1+upper)/3
per <- P + (2-upper)/3
Plot a Lexis diagram
library(Epi)
Lexis.diagram(age=c(0,10), date=c(1990,2000), coh.grid=TRUE, int=1)
box ()
Print the person-years for males there
text(per[sex==1], age[sex==1],
formatC(Y[sex==1]/1000, format="f", digits=1))

http://www.statistikbanken.dk/statbank5a/SelectTable/omrade0.asp?SubjectCode=02&PLanguage=1&ShowNews=OFF
http://www.statistikbanken.dk/statbank5a/SelectTable/omrade0.asp?SubjectCode=02&PLanguage=1&ShowNews=OFF

Index

x Data
N2Y, 131
x Lexis
paths.Lexis, 140
+ Multistate model
paths.Lexis, 140
+x Multistate path
paths.Lexis, 140
* aplot
legendbox, 100
plot.Lexis, 144
* array
detrend, 61
merge.Lexis, 122
pctab, 142
projection.ip, 154
x attributes
11s, 113
x attribute
timeBand, 185
timeScales, 186
* category
stat.table, 174
stattable. funs, 176
* chron
cal.yr, 35
* color
matshade, 118
* data manipulation
gen.exp, 85
unLexis, 190
+ datagen
ccwe, 38
x datasets
B.dk, 22
bdendo, 23
births, 24
blcalT, 25
BrCa, 33

193

brv, 34
diet, 62
DMconv, 63
DMepi, 64
DMlate, 66
ewrates, 75
gmortDK, 89
hivDK, 91
lep, 102
lungDK, 115
M.dk, 116
mortDK, 129
N.dk, 130
nickel, 136
occup, 139
pr, 154
S.typh, 165
steno2, 177
testisDK, 183
thoro, 184
Y.dk, 191

* design
contr.cum, 55

* distribution
ci.pd, 52

* dplot
Lexis.diagram, 106
Lexis.lines, 109
Life.lines, 112

+ hplot
apc.frame, 15
apc.lines, 19
boxes.MS, 27
Lexis.diagram, 106
Lexis.lines, 109
pc.lines, 141
plot.apc, 143
plot.Lexis, 144
plotEst, 149

194

rateplot, 155
Termplot, 181

* htest
ci.pd, 52
mh, 123
ROC, 163
twoby2, 189

* iplot
boxes.MS, 27

* iteration
stat.table, 174
stattable. funs, 176

x linear predictor
ci.eta, 45

* manip
addDrug, 8
bootlLexis, 25
cal.yr, 35
cbind.Lexis, 37
Lexis, 103
Lexis2msm, 110
lgrep, 111
Life.lines, 112
mat2pol, 117
merge.Lexis, 122
ncut, 134
nice, 135
pctab, 142
Relevel, 160
rm.tr, 162
ROC, 163
splitLexis, 171
subset.Lexis, 179
transform.Lexis, 187

+ math
in.span, 94

+x methods
pctab, 142

+* models
AalJ, 4
apc.fit, 11
apc.LCa, 18
ci.cum, 43
ci.eta, 45
ci.lin, 46
clogistic, 54
contr.cum, 55
effx, 67

INDEX

effx.match, 69
expand.data, 76
fit.add, 77
fit.baseline, 78
fit.mult, 79
harm, 90
Icens, 92
LCa.fit, 96
mod.Lexis, 125
plotEst, 149
plotevent, 151
poisreg, 152

* prediction frame

ci.eta, 45

* prediction

ci.eta, 45

* regression

apc.fit, 11
apc.LCa, 18
ci.Crisk, 40
ci.cum, 43
ci.eta, 45
ci.lin, 46
effx, 67
effx.match, 69
expand.data, 76
fit.add, 77
fit.baseline, 78
fit.mult, 79
float, 80
ftrend, 83
harm, 90
Icens, 92
LCa.fit, 96

Ns, 136
plotevent, 151

* survival

addCov, 5
addDrug, 8
boxes.MS, 27
cbind.Lexis, 37
crr.lLexis, 56
cutlLexis, 58
entry.Lexis, 70
erl, 72
expand.data, 76
fit.add, 77
fit.baseline, 78

INDEX

fit.mult, 79
foreign.Lexis, 82
Icens, 92
Lexis, 103
Lexis2msm, 110
mcutlLexis, 120
plotevent, 151
rcutlLexis, 159
simLexis, 166
stack.Lexis, 173
summary.Lexis, 180
* 1S
entry.Lexis, 70
* univar
twoby?2, 189

[.Lexis (subset.Lexis), 179

Aal, 4
absorbing, 105, 128, 188

absorbing (entry.Lexis), 70

addCov, 5

addCov.Lexis, 9, 10, 60, 87, 105, 121, 128,

159
addDrug, 8
addmargins, 143
after (entry.Lexis), 70

apc.fit, 11, 17-21, 100, 132, 142-144
apc.frame, 15, 15, 19-21, 141-144, 158

apc.LCa, 15, 18, 100

apc.lines, 14, 15,17, 19, 143, 144

apc.plot, 14, 15,17, 21
apc.plot (plot.apc), 143
Aplot (rateplot), 155
arrows, 3/

as.Date.cal.yr (cal.yr), 35

B.dk, 22

bdendo, 23

bdendo11 (bdendo), 23
before (entry.Lexis), 70
binom. test, 53
births, 24

blcalT, 25
bootlLexis, 25, 180
boxarr (boxes.MS), 27
boxes (boxes.MS), 27
boxes.Lexis, 60, 102, 173
boxes.matrix, /8
boxes.MS, 27

BrCa, 33
breaks (timeBand), 185
brv, 34

cal.yr, 35, 105
cbind.Lexis, 37, 105
ccwe, 38

ci.Crisk, 5,40
ci.cum, 42, 50, 74
ci.eta, 45, 50
ci.exp(ci.lin), 46
ci.lin, 43, 44, 46, 46, 150
ci.mat (ci.lin), 46
ci.pd, 52
ci.pred, 44, 127
ci.pred(ci.lin), 46
ci.ratio(ci.lin), 46
ci.surv, 41,50
ci.surv(ci.cum),43
clear (11s), 113
clogistic, 54
coarse.Lexis (addDrug), 8
contr.2nd (contr.cum), 55
contr.cum, 55

contr.diff (contr.cum), 55
contr.orth (contr.cum), 55

contr.treatment, 56
count, 175

count (stattable.funs), 176

countlLexis (cutlLexis), 58
coxph, 125, 127

coxph.Lexis (mod.Lexis), 125
coxphLexis (mod.Lexis), 125

cp.lines (pc.lines), 141

cp.matlines (pc.lines), 141
cp.matpoints (pc.lines), 141
cp.matshade (pc.lines), 141

cp.points, 144
cp.points (pc.lines), 141
Cplot (rateplot), 155
crr, 57

crr.Lexis, 56

cut, 134

195

cutlexis, 5, 6, 10, 58, 87, 105, 120, 121, 128,

141, 159, 168, 169, 172, 174

Date, 35, 36, 62, 105
date, 36
DateTimeClasses, 36

196

dbox (boxes.MS), 27
decurve (detrend), 61
det, 95
detrend, 61, 94, 155
diet, 62

DMconv, 63

DMepi, 64

DMlate, 66

DMrand (DMlate), 66
dur, 105

dur (entry.Lexis), 70

effx, 67

effx.match, 69

entry, 105

entry (entry.Lexis), 70
entry.Lexis, 70

Epi, 72

Epi-package (Epi), 72
erl, 72

erll (erl), 72

etm, 83

etm (foreign.Lexis), 82
ewrates, 75, 136

exit, 105

exit (entry.Lexis), 70
expand.data, 76, 77-79

factorize (transform.Lexis), 187
family, 153

fgrep (1grep), 111
fillarr (boxes.MS), 27
findInterval, 134
fit.add, 77,77, 79, 80, 93
fit.baseline, 78
fit.mult, 77-79,79, 93
float, 80, 85
foreign.Lexis, 82
ftrend, 81, 83

gam, 125, 127

gam.Lexis (mod.Lexis), 125
gamLexis (mod.Lexis), 125
gen.exp, 10, 85

glm, 55,78, 125, 127, 153
glm.Lexis (mod.Lexis), 125
glmLexis (mod.Lexis), 125
gmortDK, 89, 130, 184

grep, 112

INDEX

harm, 90
hivDK, 91

Icens, 77-80, 92, 152
id.span (in.span), 94
idSpan (in.span), 94
in.span, 94

inSpan (in.span), 94
IQR, 175

lca, 100

LCa.fit, 15,18, 19,96

legendbox, 31, 100

lep, 102

levels.Lexis (transform.Lexis), 187

Lexis, 4-6, 8-10, 25, 27, 29, 34, 37, 39, 56,
57,60,71,72,82,87,103, 108, 111,
121, 124, 126-128, 140, 141, 145,
159, 162, 167-169, 173, 174, 180,
186-188, 190

Lexis.diagram, 106, 110, 113

Lexis.lines, 108, 109, 113

Lexis2msm, 110

lgrep, 111

Life.lines, 108, 110,112

lines.apc, 142, 144

lines.apc (apc.lines), 19

lines.Lexis (plot.Lexis), 144

lines.pState (simLexis), 166

linesEst (plotEst), 149

11s, 113

1s, 114

lungDK, 115

M.dk, 116

mat2pol, 41, 117

matlines, 119

matplot, 118, 119

matshade, 50, 118

max, 175

mcutLexis, 6, 10, 60, 87, 105, 120, 128, 141,
159,172

mean, 175

median, 175

merge.data.frame, 123

merge.Lexis, 105, 122, 180, 188

mh, 123

min, 175

mod.Lexis, 125

INDEX

mortDK, 90, 129, 184
msdata (foreign.Lexis), 82
msprep, 83

N.dk, 130, 192

N2Y, 131

NArray, 133

ncut, 134

ngrep (lgrep), 111
nice, 135
nickel, 75, 136
nid, 110, 141

nid (bootLexis), 25
Ns, 136, 182

nState (simLexis), 166

occup, 139, 145
order.Lexis (transform.Lexis), 187
orderLexis (transform.Lexis), 187

paths.Lexis, 140
pc.lines, 21, 141
pc.matlines (pc.lines), 141
pc.matpoints (pc.lines), 141
pc.matshade, 119
pc.matshade (pc.lines), 141
pc.points (pc.lines), 141
pctab, 142

percent, 175

percent (stattable.funs), 176
plot, 148

plot.apc, 142, 143
plot.LCa(LCa.fit), 96
plot.Lexis, 105, 108, 144
plot.pState (simLexis), 166
plot.survfit, 148
plotCIF, 41, 146, 147
plotEst, 149

plotevent, 151

points.Lexis (plot.Lexis), 144
pointsEst (plotEst), 149
poisreg, 127, 152
POSIXct, 36

POSIX1t, 36

Pplot (rateplot), 155

pr, 154

preceding, 127

preceding (entry.Lexis), 70
predict, 182

predict.LCa (LCa.fit), 96

pretty, 135

print.floated (float), 80
print.Icens (Icens), 92
print.LCa(LCa.fit), 96
print.Lexis (Lexis), 103

print.mh (mh), 123
print.stat.table (stat.table), 174

197

print.summary.Lexis (summary.Lexis), 180

projection.ip, 62, 154
pState (simLexis), 166
PY.ann (plot.Lexis), 144

quantile, 175

rateplot, 155

ratio, 175

ratio (stattable.funs), 176
rbind.Lexis, 105

rbind.Lexis (cbind.Lexis), 37
rcutLexis, 10, 60, 105, 121, 141, 159
Relevel, 160, 162, 187, 188
Relevel.factor, 187, 188
Relevel.lLexis, 26, 161

Relevel.lLexis (transform.Lexis), 187

rm.tr, 162
ROC, 163

S.typh, 165

sd, 175

show.apc.LCa (apc.LCa), 18
simLexis, 41, 166

sortLexis (transform.Lexis), 187

splitlexis, 6, 60, 105, 121, 132, 145, 159,

169,171, 174, 187
st2alb (steno2), 177
st2clin (steno2), 177
stack.Lexis, 82, 83, 173
stackedCIF, 147
stackedCIF (plotCIF), 146
stat.table, 72, 174, 176, 177
stattable.funs, 176
status (entry.Lexis), 70
steno2, 177
subset.data.frame, /79

subset.Llexis, 26, 37, 105, 123, 179, 188

subset.stacked.Lexis, /88

subset.stacked.Lexis (subset.Lexis), 179

succeeding (entry.Lexis), 70

198 INDEX

sum, 175

summary.Icens (Icens), 92
summary.LCa (LCa.fit), 96
summary.Lexis, 60, 105, 172, 180
survl (erl), 72

surv2 (erl), 72
survfit, 4, 5, 147, 148

table, 175
tapply, 175
tbox (boxes.MS), 27
Termplot, 181
termplot, 181, 182
testisDK, 183
thinCol, 94
thinCol (in.span), 94
thoro, 90, 130, 184
timeBand, 105, 172, 173, 185
timeScales, 6, 105, 186, 188
timeSince, 60
timeSince (timeScales), 186
tmat (stack.Lexis), 173
tmat.Lexis, 3/
transform.data.frame, /87
transform.Lexis, 105, 187
transform.stacked.Lexis
(transform.Lexis), 187
transient, 105, 128, 188
transient (entry.Lexis), 70
tsNA20 (timeScales), 186
twoby2, 53, 189

unLexis, 7105, 190

Wald (ci.lin), 46
weighted.mean, 175

Y.dk, 7116, 191
yll (erl), 72

ZArray (NArray), 133

	AaJ
	addCov
	addDrug
	apc.fit
	apc.frame
	apc.LCa
	apc.lines
	B.dk
	bdendo
	births
	blcaIT
	bootLexis
	boxes.MS
	BrCa
	brv
	cal.yr
	cbind.Lexis
	ccwc
	ci.Crisk
	ci.cum
	ci.eta
	ci.lin
	ci.pd
	clogistic
	contr.cum
	crr.Lexis
	cutLexis
	detrend
	diet
	DMconv
	DMepi
	DMlate
	effx
	effx.match
	entry.Lexis
	Epi
	erl
	ewrates
	expand.data
	fit.add
	fit.baseline
	fit.mult
	float
	foreign.Lexis
	ftrend
	gen.exp
	gmortDK
	harm
	hivDK
	Icens
	in.span
	LCa.fit
	legendbox
	lep
	Lexis
	Lexis.diagram
	Lexis.lines
	Lexis2msm
	lgrep
	Life.lines
	lls
	lungDK
	M.dk
	mat2pol
	matshade
	mcutLexis
	merge.Lexis
	mh
	mod.Lexis
	mortDK
	N.dk
	N2Y
	NArray
	ncut
	nice
	nickel
	Ns
	occup
	paths.Lexis
	pc.lines
	pctab
	plot.apc
	plot.Lexis
	plotCIF
	plotEst
	plotevent
	poisreg
	pr
	projection.ip
	rateplot
	rcutLexis
	Relevel
	rm.tr
	ROC
	S.typh
	simLexis
	splitLexis
	stack.Lexis
	stat.table
	stattable.funs
	steno2
	subset.Lexis
	summary.Lexis
	Termplot
	testisDK
	thoro
	timeBand
	timeScales
	transform.Lexis
	twoby2
	unLexis
	Y.dk
	Index

