Package 'DEHOGT'

July 21, 2025

Type Package

Title Differentially Expressed Heterogeneous Overdispersion Gene Test for Count Data

Version 0.99.0

Description Implements a generalized linear model approach for detecting differentially expressed genes across treatment groups in count data. The package supports both quasi-Poisson and negative binomial models to handle over-dispersion, ensuring robust identification of differential expression. It allows for the inclusion of treatment effects and gene-wise covariates, as well as normalization factors for accurate scaling across samples. Additionally, it incorporates statistical significance testing with options for p-value adjustment and log2 fold range thresholds, making it suitable for RNA-seq analysis as described in by Xu et al., (2024) <doi:10.1371/journal.pone.0300565>.

License GPL-3

Encoding UTF-8

Depends R (>= 3.5.0)

Imports doParallel, foreach, MASS,

Suggests knitr, rmarkdown, BiocStyle

biocViews GeneExpression, DifferentialExpression, StatisticalMethod, Regression, Normalization

VignetteBuilder knitr

RoxygenNote 7.3.2

URL https://github.com/ahshen26/DEHOGT

BugReports https://github.com/ahshen26/DEHOGT/issues

NeedsCompilation no

Author Qi Xu [aut], Arlina Shen [cre] (ORCID: <https://orcid.org/0009-0008-5330-6659>), Yubai Yuan [ctb], Annie Qu [ctb]

4

Maintainer Arlina Shen <ahshen24@berkeley.edu> Repository CRAN Date/Publication 2024-09-13 18:30:06 UTC

Contents

dehogt_func			
-------------	--	--	--

Index

dehogt_func	Differentially Expressed Heterogeneous Overdispersion Genes Testing for Count Data This script implements the main function of the pro-
	posed method in the above paper

Description

Differentially Expressed Heterogeneous Overdispersion Genes Testing for Count Data This script implements the main function of the proposed method in the above paper

Usage

```
dehogt_func(
   data,
   treatment,
   norm_factors = NULL,
   covariates = NULL,
   dist = "qpois",
   padj = TRUE,
   pval_thre = 0.05,
   l2fc = FALSE,
   l2fc_thre = 1,
   num_cores = 1
)
```

Arguments

data	A matrix of gene expression data where rows represent genes and columns represent samples.
treatment	A vector specifying the treatment conditions for each sample.
norm_factors	An optional vector of normalization factors for each sample. Default is NULL, which assumes equal normalization factors.
covariates	An optional matrix of gene-wise covariates. Default is NULL.
dist	The distribution family for the GLM. Can be "qpois" for quasi-Poisson or "neg- bin" for negative binomial. Default is "qpois".

dehogt_func

padj	Logical value indicating whether to adjust p-values using the Benjamini-Hochberg (BH) procedure. Default is TRUE.
pval_thre	The threshold for identifying differentially expressed genes based on adjusted p-values. Default is 0.05.
12fc	Logical value indicating whether to consider log2 fold change for identifying differentially expressed genes. Default is FALSE.
l2fc_thre	The threshold for log2 fold change in identifying differentially expressed genes. Default is 1.
num_cores	The number of CPU cores to use for parallel computing. Default is 1.

Value

A list containing:

DE_idx	A logical vector indicating differentially expressed genes.
pvals	A numeric vector of p-values for each gene.
log2fc	A numeric vector of log2 fold changes for each gene.

Examples

```
# simulate gene expression data
data <- matrix(rpois(1000, 10), nrow = 100, ncol = 10)
# simulate random treatment assignments
treatment <- sample(0:1, 10, replace = TRUE)
# Run main function with parallel computing using 2 cores
result <- dehogt_func(data, treatment, num_cores = 2)</pre>
```

Index

 $dehogt_func, 2$