Tools for bioinformatics modeling using recursive transformer-inspired architectures, autoencoders, random forests, XGBoost, and stacked ensemble models. Includes utilities for cross-validation, calibration, benchmarking, and threshold optimization in predictive modeling workflows. The methodology builds on ensemble learning (Breiman 2001 <doi:10.1023/A:1010933404324>), gradient boosting (Chen and Guestrin 2016 <doi:10.1145/2939672.2939785>), autoencoders (Hinton and Salakhutdinov 2006 <doi:10.1126/science.1127647>), and recursive transformer efficiency approaches such as Mixture-of-Recursions (Bae et al. 2025 <doi:10.48550/arXiv.2507.10524>).
| Version: | 0.1.0 | 
| Depends: | R (≥ 4.2.0) | 
| Imports: | caret, recipes, themis, xgboost, magrittr, dplyr, pROC | 
| Suggests: | randomForest, testthat (≥ 3.0.0), PRROC, ggplot2, purrr, tibble, yardstick, knitr, rmarkdown | 
| Published: | 2025-10-03 | 
| DOI: | 10.32614/CRAN.package.BioMoR | 
| Author: | MD. Arshad [aut, cre] | 
| Maintainer: | MD. Arshad <arshad10867c at gmail.com> | 
| License: | MIT + file LICENSE | 
| NeedsCompilation: | no | 
| Materials: | NEWS | 
| CRAN checks: | BioMoR results | 
| Reference manual: | BioMoR.html , BioMoR.pdf | 
| Vignettes: | BioMoR Autoencoder (source, R code) BioMoR Benchmarking (source, R code) Getting Started with BioMoR (source, R code) | 
| Package source: | BioMoR_0.1.0.tar.gz | 
| Windows binaries: | r-devel: BioMoR_0.1.0.zip, r-release: BioMoR_0.1.0.zip, r-oldrel: BioMoR_0.1.0.zip | 
| macOS binaries: | r-release (arm64): BioMoR_0.1.0.tgz, r-oldrel (arm64): BioMoR_0.1.0.tgz, r-release (x86_64): BioMoR_0.1.0.tgz, r-oldrel (x86_64): BioMoR_0.1.0.tgz | 
Please use the canonical form https://CRAN.R-project.org/package=BioMoR to link to this page.