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Introduction

Package dlsem implements estimation and path analysis functionalities for structural equation
models with second-order polynomial lag shapes. In this vignette, the theory on distributed-lag
structural equation modelling is presented in Section 2, then the practical use of dlsem is illustrated
through a worked example in Section 3. Concluding remarks are pointed out in Section 4.

To cite dlsem in publications, please use:
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Equation Modelling: An Application to Impact Assessment of Research Activity on
European Agriculture. Proceedings of the 48th Meeting of the Italian Statistical Society,
8-10 June 2016, Salerno, IT.

Theory

Distributed-lag structural equation modelling was firstly formalised by [7] as a combination of
structural equation modelling (for example, [4]) and distributed-lag linear regression [1]. In this



chapter, theory on structural equation modelling and distributed-lag linear regression is briefly
reported before presenting distributed-lag structural equation modelling.

2.1 Structural equation modelling

Structural equation modelling (SEM) has a long history starting with the contribution of Wright
[9]. The main idea behind SEM is to perform a quantitative assessment of dependence relationships
among a set of variables. The basic feature of SEM is a directed acyclic graph (DAG). In a DAG,
variables are represented by nodes and directed edges may connect pairs of variables without
creating directed cycles (See Figure 1). If a variable receives an edge from another variable, the
latter is called parent of the former. A DAG encodes a factorization of the joint probability
distribution:

Vi, Vi) = [ p(Vs | T0) (1)
j=1

where II; is the set of parents of variable V;. As such, if some pairs of variables are not connected
by an edge, the DAG implies a set of conditional independence statements [5]. The DAG may even-
tually have a causal interpretation. If this is the case, edges represent direct causal relationships.
SEM is implemented by simultaneously applying linear regression models:

Vi = fi(Ily)
Vi = f;(1L;) (2)
Vm = fm(Hm)

where V; = f;(II;) is the equation describing the linear regression model where V; is the response
variable and its parents in the DAG are the covariates. A comprehensive review of SEM can be

found in [4].

Figure 1: A directed acyclic graph.

An important utility of SEM is path analysis, that is the decomposition of the causal effect of any
variable on another. Path analysis can be performed according to trace rules developed by [9] (see
also [8]):

e the causal effect associated to each edge in the DAG is represented by the coefficient of the
variable originating the edge in the regression model of the variable receiving the edge;

e the causal effect associated to a directed path is represented by the product of the causal
effects associated to each edge in the path;

e the causal effect of a variable on another is represented by the sum of the causal effects
associated to each directed path connecting the two variables.



For instance, consider variables V3 and V4 in the DAG displayed in Figure 1. The directed paths
connecting the two variables are (V3, V), (V3, Vi, V) and (Vs, Vi, Vs). The causal effect associated
to the first path is the coefficient of V3 in the regression model of Vg, say Bg3. The causal effect
associated to the second path is the coeflicient of V3 in the regression model of Vy, multiplied by
the coefficient of V, in the regression model of Vg, say B4)3 - B6j4- The causal effect associated to
the third path is the coefficient of V3 in the regression model of V5 multiplied by the coefficient of
V5 in the regression model of Vg, say B5)3 - B65- The overal causal effect of V3 on Vg is the sum of
the causal effect associated to each of the three paths above, say B3 + 843 - B6j4 + Bs)3 * Be|5-

Often, the causal effect of a variable on another is termed overall causal effect, the causal effect
associated to a directed path made by a single edge is called direct effect, while the causal effects
associated to the other directed paths are denoted as indirect effects. In the example above, 343
represents the direct effect of V3 on Vg, while causal effects 843 - 8614 and 353 - 865 represent the
indirect effects of V3 on Vi, and Bg)3 + B3 Bsj4 + B5)3 * Be|5 is the overall causal effect of V3 on V5.

2.2 Distributed-lag linear regression

Distributed-lag linear regression is an extension of the classic linear model including lagged in-
stances of one or more quantitative covariates:

J Lj
ye=B0+ Y D Bis i +e et ~ N(0,0?) (3)

j=11=0

where y; is the value of the response variable at time ¢ and z;;; is the value of the j-th covariate
at [ time lags before t. The set (85,0, 3,1, -, 3j,1;) is denoted as the lag shape of the j-th covariate
and represents its effect on the response variable at different time lags. Estimation of a distributed-
lag linear regression model using ordinary least squares is inefficient because lagged instances of
the same covariate are typically highly correlated. Also, the lag shape of a covariate is completely
unrestricted, thus problems of interpretation may arise.

Second-order polynomial lag shapes can be used to solve these drawbacks. They include the
endpoint-constrained quadratic lag shape:

—a;j+2)? (bj—a;+2)2 (4)

g, =40 [_ el Gkl - e | 0 SIS
g otherwise

and the quadratic decreasing lag shape:

1 —2b;1+b3
Biy = i @az @ =1<b; (5)
7 0 otherwise

(see Figure 2). The endpoint-constrained quadratic lag shape is zero for a lag [ < a; — 1 or
[ > bj + 1, and symmetric with mode equal to 6; at (a; + b;)/2. The quadratic decreasing lag
shape decreases from value 6; at lag a; to value 0 at lag b; according to a quadratic function. We
refer to a; as the gestation lag, and to b; — a; as the lag width. A second-order polynomial lag
shape is monotonic in the sign, that is 3;; is either non-negative or non-positive for any j and .

A distributed-lag linear regression model with second-order polynomial lag shapes is linear in
parameters 8; (j =1,...,J), provided that parameters a; and b; (j =1,...,J) are known. Thus,
one can use ordinary least squares to estimate the parameters of several models where the value
of a; and b; is varied within a grid of values, and then select the model with the best fit to data.
See [1] (Chapter 6) for further details on distributed-lag linear regression.

Note that neither the response variable nor the covariates must contain a trend in order to ob-
tain unbiased estimates [3]. A reasonable procedure is to sequentially apply differentiation to all
variables until the Dickey-Fuller test rejects the hypothesis of unit root for all of them.



Figure 2: Second-order polynomial lag shapes: endpoint-constrained quadratic lag shape (straight
line), quadrating decreasing lag shape (dotted line).

2.3 Distributed-lag structural equation modelling

Distributed-lag structural equation modelling (DLSEM) is an extension of SEM, where variables
are related by distributed-lag linear regression models with second-order polynomial lag shapes
[7]. In DLSEM, the DAG does not explicitly include time lags but a special semantic holds:

e if an edge connects two variables, there is at least one time lag where the coefficient of the
variable originating the edge in the regression model of the variable receiving the edge is
non-zero.

DLSEM can be used to perform path analysis at different time lags by extending tracing rules
reported in Subsection 2.1 (see the box below).

Tracing rules for DLSEM

e The causal effect associated to each edge in the DAG at lag k is represented by the
coefficient at lag k of the variable originating the edge in the regression model of the
variable receiving the edge.

e The causal effect associated to a directed path at lag k is computed as follows:

1. denote the number of edges in the path as p;

2. enumerate all the possible p-uples of lags, one lag for each of the p edges, such that
their sum is equal to k;

3. for each p-uple of lags:

- for each lag in the p-uple, compute the coefficient associated to the corresponding
edge at that lag;

- compute the product of all these coefficients;

4. sum all these products.

e The causal effect of a variable on another at lag k is represented by the sum of the causal
effects at lag k associated to each directed path connecting the two variables.

A causal effect evaluated at a single lag is denoted as instantaneous causal effect. The cumulative
causal effect at a prespecified lag, say k, is obtained by summing all the instantaneous causal
effects for each lag up to k.



Parameter estimation in DLSEM can be performed by applying the method proposed in Subsection
2.2 to each regression model. An edge of the DAG is considered as statistically significant if there
is at least one time lag where the estimate of the coefficient of the variable originating the edge in
the regression model of the variable receiving the edge is statistically significant.

3 Distributed-lag structural equation modelling with dlsem

The practical use of package d1sem is illustrated by an application to impact assessment of research
activity on European Agriculture. It is widely acknowledged that research activity is effective
in increasing productivity, however, it is also expected to improve profitability and consumer
surplus independently from productivity. Here, a distributed-lag structural equation model with
DAG shown in Figure 3 is estimated from dataset agres in order to test whether the influence
through time of research activity on profitability and consumer surplus is direct and/or mediated
by productivity.

Figure 3: The hypothesized DAG for impact assessment of research activity on European Agri-
culture. ‘RES’: research activity. ‘PROD’: productivity. ‘PROFIT’: profitability. ‘C_SURPL’:
consumer surplus.

Dataset agres contains data for 10 European countries (Austria, Germany, Spain, Finland, France,
Ireland, Ttaly, Netherlands, Sweden, United Kingdom) in the period 1990-2010 from the EURO-
STAT database (http://ec.europa.eu/eurostat/data/database).

> data(agres)
> summary (agres)

COUNTRY YEAR GDP FARM_SIZE
AT : 22 Min. 11991 Min. . 85220 Min. :0.01820
BE : 22 1st Qu.:1996 1st Qu.: 218183 1st Qu.:0.03370
DE : 22 Median :2002 Median : 356676 Median :0.05104
DK : 22 Mean :2002 Mean . 879657 Mean :0.06222
EL : 22 3rd Qu.:2007 3rd Qu.:1678138 3rd Qu.:0.07544
ES : 22 Max. 12012 Max. 13158590 Max. 0.21481
(Other) : 176

NPATENT GVA PPI ENTR_INCOME
Min. : 0.04 Min. ;968 Min. : 60.36 Min. : 18.75

1st Qu.: 7.75 1st Qu.: 3593 1st Qu.: 97.14 1st Qu.: 70.70
Median : 24.18 Median : 6782 Median :102.07 Median : 87.80
Mean : 65.27 Mean 013471 Mean :105.52 Mean : 91.85



3rd Qu.: 71.73 3rd Qu.:21024 3rd Qu.:111.12 3rd Qu.:107.44

Max. :472.09 Max. 141048 Max. :191.60 Max. 1229.36

NA's 01 NA's 19 NA's :8

Variable NPATENT representing the number of Agriculture-related patent applications will be
used as a proxy of research activity in Agriculture. Variable GVA representing the gross value
added of Agriculture will be used as a proxy of agricultural productivity. Variable ENTR_INCOME
representing the net entrepreneurial income index will be used as a proxy of profitability. Variable
PPI representing the price index of agricultural products will be used as a proxy of consumer
surplus.

3.1 The model code

The first step is the specification of the model code containing the hypothesized DAG and the
lag shapes. The model code must be a list of formulas, one for each regression model. In each
formula, the response and the covariates must be quantitative variables and operators quec( ) and
qdec( ) can be employed to specify, respectively, an endpoint-constrained quadratic or a quadratic
decreasing lag shape. Each of these operators has three arguments: the name of the variable
to which the lag shape is applied, the minimum lag with a non-zero coefficient (a;), and the
maximum lag with a non-zero coefficient (b;). If none of these two operators is applied to a
variable, it is assumed that the coefficient associated to that variable is 0 for time lags greater
than 0 (no lag shape). The group factor and context variables must not be specified in the model
code (see Subsection 3.3). The regression model for variables with no parents besides the group
factor and context variables can be omitted from the model code. In this illustration, we assume
an endpoint-constrained quadratic lag shape between 0 and 15 time lags for all variables:

> mycode <- list(

GVA~quec (NPATENT,0,15),

+ PPI~quec (NPATENT,0,15)+quec(GVA,0,15),

+ ENTR_INCOME~quec (NPATENT,0, 15)+quec(GVA,0,15)
+ )

+

3.2 Control options

The second step is the specification of control options. Control options must be a named list
containing one or more among several components. The key component is adapt, a named vector
of logical values where each value must refer to one response variable and indicates whether values
a; and b; for each lag shape in the regression model of that variable must be selected on the basis
of the best fit to data, instead of employing the ones specified in the model code. If adaption is
requested for a regression model, three further components are taken into account: max.gestation,
min.width and sign. Each of these three components is a named list, where each component of
the list must refer to one response variable and must be a named vector including, respectively,
the maximum gestation lag, the minimum lag width and the sign (either "+’ for non-negative, or
- for non-positive) of the coefficients of one or more covariates. In this illustration, we choose
to perform adaptation of lag shapes for all regression models with the following constraints: (i)
maximum gestation lag of 3 years, (ii) minimum lag width of 5 years, (iii) all coefficients with
non-negative sign, excepting the ones in the regression model of the price index of agricultural
products, as consumer surplus improves with the decreasing of prices:

> mycontrol <- list(

+  adapt=c(GVA=T,PPI=T,ENTR_INCOME=T),

+ max.gestation=1list(GVA=c(NPATENT=3) ,PPI=c (NPATENT=3,GVA=3),
+ ENTR_INCOME=c (NPATENT=3,GVA=3)),

+ min.width=1ist (GVA=c (NPATENT=5) ,PPI=c (NPATENT=5,GVA=5),

+ ENTR_INCOME=c (NPATENT=5,GVA=5)),

+  sign=1ist(GVA=c (NPATENT="+") ,PPI=c (NPATENT="-",GVA="-"),



+ ENTR_INCOME=c (NPATENT="+",GVA="+"))
+ )

3.3 Estimation

Once the model code and control options are specified, the structural model can be estimated from
data using the command dlsem( ). The user can indicate a group factor to argument group and
one or more context variables to argument context. By indicating the group factor, one intercept
for each level of the group factor will be estimated in each regression model. By indicating context
variables, they will be included as covariates in each regression model in order to eliminate spurious
effects due to differences between the levels of the group factor. Each context variable can be either
qualitative or quantitative and its coefficient in each regression model is 0 for time lags greater
than 0 (no lag shape). Furthermore, the user can decide to perform any number of the following
operations:

e differentiation until the hypothesis of unit root is rejected by the Dickey-Fuller test for all
the quantitative variables (by setting argument uniroot.check to TRUE);

e imputation of missing values for quantitative variables using the Expectation-Maximization
algorithm [2] (by setting argument imputation to TRUE);

e apply the logarithmic transformation to all quantitative variables in order to interpret each
coefficient as an elasticity (by setting argument log to TRUE).

In this illustration, we indicate the country as the group factor, gross domestic product and average
farm size as context variables, allow differentiation until stationarity, imputation of missing values
and logarithmic transformation for all quantitative variables:

> mod0 <- dlsem(mycode,group="COUNTRY",context=c("GDP","FARM_SIZE"),
+ data=agres,control=mycontrol,uniroot.check=T,imputation=T,log=T)

Checking stationarity...

Order 1 differentiation performed
Starting EM...
EM iteration
EM iteration
EM iteration

Log-likelihood: 1394.8399
Log-likelihood: 1395.3395
Log-likelihood: 1395.4016

EM iteration Log-likelihood: 1395.4073

EM iteration 5. Log-likelihood: 1395.4067

EM converged after 4 iterations. Log-likelihood: 1395.4067
Start estimation...

Estimating regression model 1/4 (NPATENT)
Estimating regression model 2/4 (GVA)
Estimating regression model 3/4 (PPI)
Estimating regression model 4/4 (ENTR_INCOME)
Estimation completed

O WN -

After estimating the structural model, the user can display the DAG including only statistically
significant edges.

> plot(modO)

The result is shown in Figure 4: each edge is coloured according to the sign of its causal effect
(green for non-negative, red for non-positive), while the group factor and context variables are
omitted from the DAG.

We see that all edges are statistically significant, excepting the one linking research activity to
profitability. This provides evidence that the effect of research activity on consumer surplus is
both direct and mediated by productivity, and the effect of research activity on profitability is
only mediated by productivity.
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Figure 4: The DAG including only statistically significant edges. Green: non-negative causal
effect. Red: non-positive causal effect.

The user can also request the summary of estimation:
> summary (mod0)
$NPATENT

Call:
"NPATENT ~ COUNTRY+GDP+FARM_SIZE"

Residuals:
Min 1Q Median 3Q Max
-3.6255 -0.2156 0.0172 0.2146 3.8613

Coefficients:
Estimate Std. Error t value Pr(>|tl)

factor (COUNTRY)AT -0.032677  0.153155 -0.213 0.831
factor (COUNTRY)BE -0.051062  0.153745 -0.332 0.740
factor (COUNTRY)DE -0.029085  0.153605 -0.189 0.850
factor (COUNTRY)DK -0.028752  0.153359 -0.187 0.851
factor (COUNTRY)EL 0.008343 0.151246  0.055 0.956
factor (COUNTRY)ES -0.033427  0.154347 -0.217 0.829
factor (COUNTRY)FI -0.012809  0.155401 -0.082 0.934
factor (COUNTRY)FR -0.061953  0.152594 -0.406 0.685
factor (COUNTRY)IE -0.080913  0.167465 -0.483 0.629
factor (COUNTRY)IT 0.001801 0.151346 0.012 0.991
factor (COUNTRY)NL -0.063467 0.153436 -0.414 0.679
factor (COUNTRY)PT 0.028596 0.151790 0.188 0.851
factor (COUNTRY)SE -0.093923  0.154125 -0.609 0.543
factor (COUNTRY)UK -0.102351  0.154367 -0.663 0.508
GDP 2.060751 1.586265 1.299 0.195
FARM_SIZE 0.049937  0.562659  0.089 0.929

Residual standard error: 0.686 on 278 degrees of freedom

(14 observations deleted due to missingness)
Multiple R-squared: 0.008403, Adjusted R-squared: -0.04867
F-statistic: 0.1472 on 16 and 278 DF, p-value: 1

$GVA

Call:



"GVA ~ COUNTRY+quec (NPATENT,1,15)+GDP+FARM_SIZE"

Residuals:
Min 1Q Median 3Q Max
-0.298977 -0.034302 0.000572 0.041155 0.257996

Coefficients:
Estimate Std. Error t value Pr(>|t])

factor (COUNTRY)AT  -7.015e-02 5.340e-02 -1.314 0.1935
factor (COUNTRY)BE  -6.750e-02 4.757e-02 -1.419  0.1605
factor (COUNTRY)DE  -2.994e-02 4.272e-02 -0.701 0.4858
factor (COUNTRY)DK  -2.912e-02 3.948e-02 -0.737 0.4634
factor (COUNTRY)EL  -1.265e-01 6.798e-02 -1.860 0.0672 .
factor (COUNTRY)ES  -1.297e-01 6.765e-02 -1.917 0.0595 .
factor (COUNTRY)FI -3.056e-02 4.268e-02 -0.716  0.4765
factor (COUNTRY)FR  -1.918e-02 3.789e-02 -0.506 0.6145
factor (COUNTRY)IE  -8.036e-02 4.204e-02 -1.912 0.0602 .
factor (COUNTRY)IT -5.455e-02 4.506e-02 -1.210 0.2303
factor (COUNTRY)NL  -2.338e-02 3.948e-02 -0.592  0.5557
factor (COUNTRY)PT  -1.879e-01 9.417e-02 -1.995 0.0501 .
factor (COUNTRY)SE  -4.723e-02 3.990e-02 -1.184  0.2406
factor (COUNTRY) UK 4.418e-05 3.602e-02 0.001 0.9990
thetaO_quec.NPATENT 1.015e-01 4.750e-02 2.137 0.0362 *
GDP 2.556e-01 3.358e-01 0.761 0.4494
FARM_SIZE 1.438e-01 1.372e-01 1.048 0.2982
Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.08788 on 67 degrees of freedom

(224 observations deleted due to missingness)
Multiple R-squared: 0.1184, Adjusted R-squared: -0.1052
F-statistic: 0.5295 on 17 and 67 DF, p-value: 0.9282

$PPI

Call:
"PPI ~ COUNTRY+quec (NPATENT,O0,13)+quec(GVA,0,14)+GDP+FARM_SIZE"

Residuals:
Min 1Q Median 3Q Max
-0.167506 -0.036284 -0.000584 0.045151 0.132116

Coefficients:
Estimate Std. Error t value Pr(>|tl)

factor (COUNTRY) AT 0.09617 0.02959  3.250 0.00169 **
factor (COUNTRY)BE 0.07313 0.02898 2.524 0.01360 *
factor (COUNTRY)DE 0.05803 0.02540 2.285 0.02499 *
factor (COUNTRY)DK 0.08315 0.02528 3.290 0.00149 *x
factor (COUNTRY)EL 0.08880 0.03868 2.296 0.02432 *
factor (COUNTRY)ES 0.09384 0.03102  3.025 0.00334 x**
factor (COUNTRY)FI 0.07735 0.02576  3.002 0.00357 **
factor (COUNTRY)FR 0.06450 0.02533 2.546 0.01281 *
factor (COUNTRY)IE -0.01945 0.04607 -0.422 0.67398
factor (COUNTRY) IT 0.08050 0.02574  3.128 0.00245 *x
factor (COUNTRY)NL 0.03607 0.02562 1.408 0.16303
factor (COUNTRY)PT 0.13945 0.04462 3.125 0.00248 *x
factor (COUNTRY) SE 0.05435 0.02754 1.973 0.05193 .
factor (COUNTRY) UK 0.07131 0.02428 2.938 0.00432 *x
thetaO_quec.NPATENT -0.07098 0.02161 -3.285 0.00152 *x
thetalO_quec.GVA -0.17540 0.07322 -2.395 0.01893 *
GDP 2.04719 0.22917  8.933 1.19e-13 **x*
FARM_SIZE 0.14364 0.09643 1.490 0.14027
Signif. codes: O 'xxx' 0.001 '#x' 0.01 'x' 0.05 '.' 0.1 ' ' 1



Residual standard error: 0.06331 on 80 degrees of freedom

(210 observations deleted due to missingness)
Multiple R-squared: 0.641, Adjusted R-squared: 0.5602
F-statistic: 7.934 on 18 and 80 DF, p-value: 1.936e-11

$ENTR_INCOME

Call:
"ENTR_INCOME ~ COUNTRY+quec (NPATENT,1,13)+quec(GVA,1,14)+GDP+FARM_SIZE"

Residuals:
Min 1Q Median 3Q Max
-0.96399 -0.12989 0.00663 0.14634 0.56581

Coefficients:
Estimate Std. Error t value Pr(>|t])

factor (COUNTRY)AT  -0.14959 0.13458 -1.112 0.269665
factor (COUNTRY)BE  -0.26243 0.13144 -1.997 0.049281 *
factor (COUNTRY)DE  -0.13999 0.11580 -1.209 0.230280
factor (COUNTRY)DK  -0.39852 0.11405 -3.494 0.000778 ***
factor (COUNTRY)EL  -0.07998 0.16902 -0.473 0.637349
factor (COUNTRY)ES  -0.24574 0.14855 -1.654 0.101998
factor (COUNTRY)FI -0.09529 0.11379 -0.837 0.404825
factor (COUNTRY)FR  -0.12296 0.11267 -1.091 0.278418
factor (COUNTRY) IE 0.17533 0.16480 1.064 0.290585
factor (COUNTRY)IT  -0.06445 0.11775 -0.547 0.585646
factor (COUNTRY)NL  -0.10808 0.11422 -0.946 0.346867
factor (COUNTRY)PT  -0.24381 0.21085 -1.156 0.250994
factor (COUNTRY)SE  -0.08117 0.11962 -0.679 0.499352
factor (COUNTRY)UK  -0.09867 0.10783 -0.915 0.362895
thetaO_quec.NPATENT 0.16322 0.10498 1.555 0.123936
thetaO_quec.GVA 0.62290 0.29551 2.108 0.038173 *
GDP -3.01030 1.01618 -2.962 0.004018 x*x*
FARM_SIZE -1.21328 0.42983 -2.823 0.006007 **
Signif. codes: O 'xxx' 0.001 'sx' 0.01 'x' 0.05 '.' 0.1 ' ' 1

Residual standard error: 0.2827 on 80 degrees of freedom

(210 observations deleted due to missingness)
Multiple R-squared: 0.2983, Adjusted R-squared: 0.1404
F-statistic: 1.889 on 18 and 80 DF, p-value: 0.02853

The summary of estimation returns estimates of parameters 0; (j = 1,...,J). Instead, the com-
mand edgeCoeff( ) can be used to obtain estimates and confidence intervals of coefficients at the
relevant time lags §8;; (j =1,...,J;1=0,1,...):

> edgeCoeff (mod0)

$-0"

2.5% 50% 97.5Y
GVA~NPATENT 0.00000000 0.00000000 0.000000000
PPI~NPATENT -0.02820862 -0.01766653 -0.007124428
PPI~GVA -0.07474607 -0.04111016 -0.007474252
ENTR_INCOME~NPATENT 0.00000000 0.00000000 0.000000000
ENTR_INCOME~GVA 0.00000000 0.00000000 0.000000000
$-1°

2.5% 50% 97.5%
GVA~NPATENT 0.001971873 0.02379354 0.04561522
PPI~NPATENT -0.052387442 -0.03280926 -0.01323108
PPI~GVA -0.139526002 -0.07673897 -0.01395194
ENTR_INCOME~NPATENT 0.000000000 0.00000000 0.00000000
ENTR_INCOME~GVA 0.010878743 0.15503301 0.29918727
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$-2°

GVA™NPATENT
PPI”NPATENT

PPI~GVA
ENTR_INCOME~NPATENT
ENTR_INCOME~GVA

$-3"

GVA™NPATENT
PPI”NPATENT
PPI~GVA
ENTR_INCOME~NPATENT
ENTR_INCOME~GVA

$4°

GVA”NPATENT
PPI”NPATENT

PPI”GVA
ENTR_INCOME™NPATENT
ENTR_INCOME~GVA

$°5°

GVA™NPATENT
PPI”NPATENT

PPI~GVA
ENTR_INCOME~NPATENT
ENTR_INCOME™GVA

$°6°

GVA™NPATENT
PPI”NPATENT

PPI~GVA
ENTR_INCOME“NPATENT
ENTR_INCOME~GVA

$-7"

GVA™NPATENT
PPI”NPATENT

PPI~GVA
ENTR_INCOME~NPATENT
ENTR_INCOME~GVA

$-8"

GVA”NPATENT
PPI”NPATENT

PPI™GVA
ENTR_INCOME™NPATENT
ENTR_INCOME~GVA

$9°

GVA™NPATENT
PPI”NPATENT

PPI"GVA
ENTR_INCOME~NPATENT
ENTR_INCOME™GVA

2.5%

.00368083
.07253646
.19433979
.00000000
.02020338

2.5Y%

.00512687
.08865567
.23918743
.00000000
.02797391

2.5%

.006309994
.100745081
. 274068932
.000000000
.034190336

2.5%

.007230202
.108804688
.298984290
.000000000
.038852654

2.5%

.007887493
.112834491
.313933504
.000000000
.041960866

2.5%

.008281867
.112834491
.318916576
.000000000
.043514972

2.5%

.008413325
.108804688
.313933504
.000000000
.043514972

2.5%

.008281867
.100745081
.298984290
.000000000
.041960866

-0.
-0.

-0.
-0.

50%

.04441462
.04542821
.10688642
.00000000
.28791844

50%

.06186322
.05552337
.13155252
.00000000
.39865630

50%
.07613934
.06309473
.15073726
.00000000
.48724659

50%
.08724300
06814231
16444065
.00000000
.55368931

50%
.09517418
.07066610
.17266268
.00000000
.59798445

50%
.09993289
.07066610
.17540336
.00000000
.62013203

50%
.10151913
.06814231
.17266268
.00000000
.62013203

50%
.09993289
06309473
16444065
.00000000
.59798445

|
[eNeNeoNeoNe)
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97.5%

.08514840
.01831996
.01943306
.00000000
.55563350

97.5%

.11859956
.02239106
.02391761
.00000000
. 76933869

97.5%
. 14596869
.02544439
.02740559
.00000000
.94030285

97.5%
.16725579
.02747994
.02989701
.00000000
.06852596

97.5%
.18246087
.02849771
.03139186
.00000000
.15400804

97.5%
.19158391
.02849771
.03189014
.00000000
.19674908

97.5%
.19462492
02747994
.03139186
.00000000
.19674908

97.5%
.19158391
.02544439
.02989701
.00000000
.15400804



$10°

GVA™NPATENT
PPI”NPATENT

PPI~GVA
ENTR_INCOME~NPATENT
ENTR_INCOME~GVA

$-11°

GVA”NPATENT
PPI”NPATENT

PPI”GVA
ENTR_INCOME™NPATENT
ENTR_INCOME~GVA

$712°

GVA™NPATENT
PPI”NPATENT

PPI"GVA
ENTR_INCOME~NPATENT
ENTR_INCOME~GVA

$713°

GVA™NPATENT
PPI”NPATENT

PPI~GVA
ENTR_INCOME~NPATENT
ENTR_INCOME~GVA

$-14°

GVA™NPATENT
PPI”NPATENT

PPI~GVA
ENTR_INCOME~NPATENT
ENTR_INCOME~GVA

$°15°

GVA™NPATENT
PPI”NPATENT

PPI~GVA
ENTR_INCOME~NPATENT
ENTR_INCOME~GVA

2.5%
.007887493
088655672
. 274068932
.000000000
.038852654

2.5%
.007230202
.072536459
.239187432
.000000000
.034190336

2.5%
.006309994
.062387442
.194339788
.000000000
.027973911

2.5%
.00512687
.02820862
.13952600
.00000000
.02020338

2.5%
.00368083
.00000000
.07474607
.00000000
.01087874

2.5Y%
0.001971873
0.000000000
0.000000000
0.000000000
0.000000000

3.4 Path analysis

Path analysis can be performed using the command pathAnal( ). The user must specify one or more
starting variables (argument from) and the ending variable (argument to). Optionally, specific time
lags on which path analysis should be focused can be provided to argument lag, otherwise all the
relevant ones are considered. Also, the user can choose whether instantaneous (argument cumul
set to FALSE, the default) or cumulative (argument cumul set to TRUE) causal effects must be
returned. Here we perform two path analysis tasks: one from research activity to profitability and
the other from research activity to consumer surplus. For both, we focus on time lags 5, 10, 15,

50%
.09517418
.056552337
.15073726
.00000000
.55368931

50%
.08724300
.04542821
.13155252
.00000000
.48724659

50%
.07613934
.03280926
.10688642
.00000000
.39865630

50%
.06186322
.01766653
.07673897
.00000000
.28791844

50%
.04441462
.00000000
.04111016
.00000000
.15503301

50%
0.02379354
0.00000000
0.00000000
0.00000000
0.00000000

97.5%
.18246087
.02239106
.02740559
.00000000
.06852596

97.5%
.16725579
.01831996
.02391761
.00000000
.94030285

97.5%
.14596869
.01323108
.01943306
.00000000
. 76933869

97.5%

.118599563
.007124428
.013951937
.000000000
.55656633502

97.5%

.085148405
.000000000
.007474252
.000000000
.299187270

97.5Y%

0.04561522
0.00000000
0.00000000
0.00000000
0.00000000

20 and 25, and request cumulative causal effects:

> pathAnal (modO, from="NPATENT", to="ENTR_INCOME",lag=c(5,10,15,20,25) , cumul=T)

$~ NPATENT*GVA*ENTR_INCOME™

2.5%

50% 97.5

%
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5 0.02276737 0.1082044 0.1936413
10 0.47814179 1.0839758 1.6898097
15 1.75013573 3.3444982 4.9388607
20 3.02212968 5.6050207 8.1879117
25 3.47750409 6.5807921 9.6840801
$overall

2.5Y% 50% 97.5%

5 0.02276737 0.1082044 0.1936413
10 0.47814179 1.0839758 1.6898097
15 1.75013573 3.3444982 4.9388607
20 3.02212968 5.6050207 8.1879117
25 3.47750409 6.5807921 9.6840801

> pathAnal (modO,from="NPATENT",to="PPI",lag=c(5,10,15,20,25) ,cumul=T)

$~NPATENT*GVA*PPI"

2.5% 50% 97.5%
5 -0.09077204 -0.05435072 -0.0179294
10 -0.59019516 -0.39351888 -0.1968426
15 -1.55081124 -1.08108464 -0.6113580
20 -2.44436338 -1.71655161 -0.9887398
25 -2.84103140 -1.98134075 -1.1216501

$~NPATENT*PPI"

2.5% 50% 97.5%
5 -0.4513380 -0.2826644 -0.1139909
10 -0.9752124 -0.6107570 -0.2463017
15 -1.1283449 -0.7066610 -0.2849771
20 -1.1283449 -0.7066610 -0.2849771
25 -1.1283449 -0.7066610 -0.2849771

$overall

2.5% 50% 97.5Y%
5 -0.542110 -0.3370151 -0.1319203
10 -1.565408 -1.0042759 -0.4431443
15 -2.679156 -1.7877457 -0.8963352
20 -3.572708 -2.4232126 -1.2737170
25 -3.969376 -2.6880018 -1.4066272

The output of path analysis is a list of matrices, each containing estimates and confidence intervals
of the causal effect associated to each path connecting the starting variables to the ending variable
at the requested time lags. Also, estimates and confidence intervals of the overall causal effect is
shown in the component named overall.

Since the logarithmic trasformation was applied to all quantitative variables, causal effects above
are interpreted as elasticities, that is, for a 1% of patent applications more, profitability and
consumer surplus are expected to grow by 6.6% and 1.8%, respectively, after 25 years.

The estimated lag shape associated to an overall causal effect can be displayed using the command
lagPlot( ):

> lagPlot (modO,from="NPATENT",to="ENTR_INCOME")
> lagPlot (modO,from="NPATENT",to="PPI")

The result is shown in Figure 5.

4 Concluding remarks

Package dlsem is conceived to perform impact analysis, that is the quantitative assessment of the
consequences on a system due to an internal or external impulse, using distributed-lag structural
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Figure 5: The estimated lag shape associated to the overall causal effect of research activity on
profitability and consumer surplus. 95% confidence intervals are shown in grey.

equation modelling with second-order polynomial lag shapes. Second-order polynomial lag shapes
have several advantages, including simplicity of estimation and a clear interpretation of parameters
for domain experts. The illustration proposed in this tutorial applies impact analysis to a simplified
problem of agricultural economics. The model here proposed can be extended by considering
research investment as a direct cause of research activity, as well as a larger number variables to
better measure the macroeconomic state of the system.
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